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Abstract: The traditional description of high-energy small-angle scattering in QCD has

two components — a soft Pomeron Regge pole for the tensor glueball, and a hard BFKL

Pomeron in leading order at weak coupling. On the basis of gauge/string duality, we present

a coherent treatment of the Pomeron. In large-N QCD-like theories, we use curved-space

string-theory to describe simultaneously both the BFKL regime and the classic Regge

regime. The problem reduces to finding the spectrum of a single j-plane Schrödinger

operator. For ultraviolet-conformal theories, the spectrum exhibits a set of Regge trajec-

tories at positive t, and a leading j-plane cut for negative t, the cross-over point being

model-dependent. For theories with logarithmically-running couplings, one instead finds a

discrete spectrum of poles at all t, where the Regge trajectories at positive t continuously

become a set of slowly-varying and closely-spaced poles at negative t. Our results agree

with expectations for the BFKL Pomeron at negative t, and with the expected glueball

spectrum at positive t, but provide a framework in which they are unified. Effects beyond

the single Pomeron exchange are briefly discussed.
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1. Introduction

As a phenomenological model for hadrons in QCD, string theory in flat space has not been

widely successful. In what we may call the “classic Regge regime”(s much greater than

Λ2
QCD, with |t| of order or smaller than Λ2

QCD) [1, 2], hadronic scattering data suggests that

QCD amplitudes exhibit “Regge behavior” similar to that of flat-space classical string the-

ory. By Regge behavior is meant that, e.g. for 2 → 2 scattering amplitudes, A(s, t) ∼ sα(t),

– 1 –



JH
E

P
1

2
(2

0
0

7
)0

0
5

where the functions α(t) are called “Regge trajectories”. For most kinematics, however,

strings in flat space disagree qualitatively with QCD. In elastic scattering at large angles

(s ∼ −t ≫ Λ2
QCD), QCD amplitudes are suppressed by powers of s, while amplitudes in

string theory are exponentially suppressed. For scattering with s ≫ −t ≫ ΛQCD (small

fixed angles and ultra-high energies), string amplitudes continue to show Regge behavior

with a linear trajectory, but QCD amplitudes behave differently. The asymptotic Regge

regime is physically important, as it dominates total cross-sections and differential cross-

sections dσ/dt at small angle. Unfortunately neither direct perturbative computation nor

lattice gauge theory methods can be used to compute QCD amplitudes in this kinematic

region. Many attempts have been made to clarify the physics of this regime, as well as the

related physics of small-x structure functions in deep inelastic scattering, but the situation

remains murky.

QCD is an especially difficult theory in which to investigate this issue, and were it not

for the data we would have no good intuition for the physics. An important simplification

is expected to occur when the number of colors N is taken very large. In the limit N → ∞
followed by s → ∞, scattering amplitudes in the Regge regime are dominated by what is

known as single-Pomeron exchange. The Pomeron is a coherent color-singlet object, built

from gluons, whose properties are universal; it is the object which is exchanged by any pair

of hadrons that scatter at high energy and large impact parameter.1 In string theory, this

is the object which is exchanged in tree-level scattering in the Regge regime; it is not the

graviton but the graviton’s Regge trajectory. In real QCD at fixed N , and in string theory

at finite string coupling, multi-Pomeron exchange eventually comes to dominate as s → ∞.

We will not address this regime in the present paper (aside from a few comments in the

conclusions), focusing instead on clarifying the properties of single Pomeron exchange.

Even the single Pomeron is very subtle in QCD. At positive t, the notion of a “soft”

Pomeron — a Regge trajectory on which lies the lightest 2++ glueball state —is generally

accepted.2 It generalizes the observed “soft” charge-carrying Reggeons, such as the rho

trajectory for the ρ meson and its higher spin recurrences [15]. All glueball states are

expected to become stable as N → ∞. At negative t, the notion of a “hard” Pomeron has

emerged from perturbative resummation of Feynman diagrams, as pioneered by Balitsky,

Fadin, Lipatov, and Kuraev [16 – 18], referred to as “BFKL”; for a modern introduction

1The Pomeron is a Regge singularity initially proposed by Chew and Frautschi [1] and independently

by Gribov [2], in honor of I. Ia. Pomeranchuk, who first addressed the general question of the possible

equality of total cross-sections for particle-particle and particle-antiparticle interactions at high energies.

Even before the theory of QCD was introduced, it was recognized that the Pomeron propagator should be

endowed with the topology of a cylinder in a 1/N expansion, i.e., it represents the exchange of a closed-

string-like structure. See [3, 4]. This topological feature was explored extensively in the 1980’s, through

the optical theorem, to understand patterns of particle production [5]. Interest in the phenomenological

importance of the Pomeron was rekindled in the 1990’s; see [6].
2Due to mixing with ordinary mesons, experimental identification of glueball states has been challenging.

The best evidence for their existence has been through lattice gauge theory [7]. For inferring the property

of the Pomeron trajectory from lattice data, see [8]. The relevant tensor glueball state was first studied

in [9 – 11] from an AdS/CFT duality perspective. For first attempts at calculating glueball masses using

AdS/CFT, following work of [12], see [13, 14].
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and a more complete list of references, see [19]. The original calculation is at leading

order in α and resums all terms of order [α ln(s/t)]n, n ≥ 0. The BFKL approach has been

controversial, especially following the understanding that in QCD the next-order correction

to BFKL is large and of opposite sign to the leading-order answer [20, 21]. Meanwhile,

no existing calculational method, or experimental data, can simultaneously address the

physics at both positive and negative t. All in all, the relation between the two Pomerons,

the theoretical status of the BFKL method, and the physics of the |t| < Λ2
QCD region have

never been made entirely clear.

Importantly, the large size of the correction to the leading-order BFKL result is in

part due to the large size of the beta function in QCD. For this reason, a second significant

simplification for an analysis of the Regge regime involves specializing to large-N gauge

theories whose beta function is either zero or small, in particular of order 1/N . If the beta

function vanishes, the theory is strictly conformally invariant, and the BFKL computation

can be carried out without confusing the effects arising from the running coupling with

those from other sources. Indeed, it has been shown that the next-order corrections to the

BFKL result in N = 4 Yang-Mills are a third as large as those in QCD, making the analysis

much more reasonable and interpretable. We will also see that our analysis is especially

simple in this case. Theories with a small beta function can then be understood as a small

perturbation on the conformally invariant case.

Although the resummation calculation of BFKL applies at s ≫ |t|, it is only valid in

regimes where confinement effects can be completely neglected. At best, these include (1)

computations in the regime s ≫ −t ≫ Λ2
QCD, where the large momentum transfer implies

that the scattering takes place on scales small compared to the confinement scale, and (2)

computations, for any t ≤ 0, but with s not exponentially large, concerning hadrons whose

size ρ is sufficiently small compared to Λ−1
QCD, as would be the case for quarkonium states

with quarks of mass M ≫ ΛQCD. For this reason, the cleanest application of BFKL is to

quarkonium-quarkonium scattering [22], or to deep-inelastic scattering off a quarkonium

state, or to off-shell photon-photon scattering [18]. But it cannot be used to study the

classic Regge regime, for which the physics of confinement is dominant.

In this paper, we aim to show, in certain large-N QCD-like theories with beta functions

that are vanishing or small in the ultraviolet, how the BFKL regime (which disagrees with

flat-space string theory) and the classic Regge regime (which roughly agrees with it) can

both simultaneously be described using curved-space string theory. We will extend this

to all values of s ≫ Λ2
QCD and t, obtaining thereby the full analytic structure of the

single-Pomeron exchange kernel, including both the soft Pomeron at positive t and the

hard Pomeron at negative t. This is technically impossible in QCD, where computations

in lattice gauge theory and perturbative gauge theory calculations are separated by a

kinematic range where the physics is both strongly coupled and Lorentzian in character.

As an illustration of the form of our results, we briefly summarize our investigation

of the simplest case: the scattering of two objects by conformally-invariant dynamics. In

conformally-invariant theories there are, of course, no hadrons, but we may either consider

four-point functions of operators that are functions of nonzero momentum pi, with s =

−(p1 + p3)
2 ≫ −t = (p1 + p2)

2, or we may add massive quarks as a probe of the theory,
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at the cost of only a 1/N violation of conformal invariance, and consider the scattering of

quarkonium bound states. For t = 0, the single-Pomeron-exchange amplitude for scattering

of two such objects A and B, with center-of-mass energy
√

s, is of the form

∫

dp⊥
p⊥

∫

dp′⊥
p′⊥

ΦA(p⊥)K(p⊥, p′⊥, s)ΦB(p′⊥) (1.1)

where p⊥ (p′⊥) is the magnitude of the transverse momentum with which the first (second)

object is probed by the Pomeron. The two functions Φi, called “impact factors”, describe

the transverse structure of the objects undergoing the scattering. These impact factors are

convolved together with the BFKL kernel K.

When the ’t Hooft coupling g2N is very small and N is very large, the computation

can be done using the methods of BFKL, according to which, at leading nontrivial order

in α, the kernel can be written exactly as an inverse Mellin transform in the spin j

K(p⊥, p′⊥, s) =

∫ C+i∞

C−i∞

dj

2iπ
sj

∫ ∞

−∞
dν eiν ln(p⊥/p′

⊥
) 1

j − ĵ(ν)
(1.2)

with the j-plane contour to the right of all j-plane singularities, and

ĵ(ν) = 1 +
αN

π

[

−2γE − Ψ

(

1

2
+ i

ν

2

)

− Ψ

(

1

2
− i

ν

2

)]

+ O(α2) (1.3)

where γE is Euler’s constant and Ψ(z) is the Digamma function.3 (Here we limit ourselves

to the term with conformal spin equal to zero.) A good approximation to this kernel can

be found by expanding the function ĵ to second order in ν

ĵ(ν) = j0 −Dν2 + order(ν4) , (1.4)

where

j0 = 1 +
4 ln 2

π
αN , D =

7ζ(3)

2π
αN . (1.5)

From this one obtains

K(p⊥, p′⊥, s) ≈ sj0
√

4πD ln s
e−(ln p′

⊥
−ln p⊥)2/4D ln s (1.6)

Strictly speaking, s must be replaced with s/s0, where
√

s0 is a characteristic energy scale

which we will discuss later. We may recognize K, in this approximation, as a power of s

times a diffusion kernel, with the diffusion occurring in the variable ln p⊥ over a diffusion

time τ ∼ ln s.

This is a very curious result. Ordinary Regge behavior A ∼ sα(t), in flat-space string

theory or in the classic Regge regime, is related to diffusion in transverse position space.

Around the “intercept” at t = 0, the Regge trajectories are initially linear, with α(t) =

α0 +α′t+ . . . ; the higher order corrections are zero in ordinary flat-space string theory and

3Note that in many papers a different normalization of ν is used; in particular our variable ν is twice as

large as that used in [19].
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are apparently small in QCD. The Regge amplitudes, Fourier transformed into position

space, take a diffusive form. Suppose the scattering particles are traveling initially along

the x1 axis, with the momentum transfer kµ completely transverse to the x0, x1 coordinates,

so that t = −k⊥
2; then

∫

dd−2k⊥eik⊥·x⊥sα(t) ≈ sα0

∫

dd−2k⊥eik⊥·x⊥e−α′k2
⊥

ln s =
sα0e−x2

⊥
/4α′ ln s

(4πα′ ln s)(d−2)/2
. (1.7)

From the point of view of one string (or hadron), the other string (or hadron) grows,

with 〈x2
⊥〉 ∼ α′ ln s, via diffusion, with a diffusion time ∝ ln s. This can also be viewed

as due to a time-resolution effect; for a modern discussion, see ref. [23]. The time-dilation

of the boosted string, as viewed by the “target”, resolves more and more of its quantum

fluctuations. This tends to make the string appear longer, and consequently larger, by an

amount that grows like a random walk in the dimensions transverse to the motion of the

string. This is explicit in our later discussion of Regge physics in the light-cone frame, in

section 4.

The similarity between these two types of diffusion, in two different variables (ln p⊥
versus x⊥) and in two different regimes (far from confinement for BFKL, deep within

confinement for the classic Regge regime), is not accidental. This can be seen by considering

the same scattering problem at large g2N , where BFKL methods cannot be applied but

where string theoretic methods, which resum the expansion in g2N to all orders, can be

used. The scattering of two states in a conformal field theory translates into the scattering

of strings on a curved background of the form AdS5×W . The coordinates on the AdS5 space

are xµ, the usual Minkowski coordinates, and r, the fifth coordinate that runs from r = 0

at the horizon of the Poincaré patch of AdS5 to r = ∞ at its boundary. The coordinate

r is related to the energy scale µ in the quantum field theory; r → 0 corresponds to the

infrared and r → ∞ to the ultraviolet. We will show the resulting kernel at t = 0 for the

scattering of two strings on an AdS5 space via single-Pomeron exchange is

K(r, r′, s) =
sj0

√
4πD ln s

e−(ln r−ln r′)2/4D ln s (1.8)

where

j0 = 2 − 2√
λ

+ O(1/λ) , D =
1

2
√

λ
+ O(1/λ) . (1.9)

Here λ ≡ R4/α′2, where R is the curvature radius of the AdS5 space and 2πα′ is the inverse

of the string tension. Note that λ = g2
YMN = 4παN in N = 4 supersymmetric Yang-Mills

theory — the numerical coefficient can differ in other theories but the proportionality

always holds — so large λ is large ’t Hooft coupling. Comparing this with eq. (1.6), one

sees that the fifth coordinate r of the string theory should be identified in this context

with k⊥ of the gauge theory. The identification of r and k⊥ has its source in the UV/IR

correspondence [24] and has been suggested in numerous contexts (see for example [25 – 27]

for related applications.) Note that the effective diffusion time τ is of order ln s for both

the BFKL and the Regge diffusion, at both large and small λ.

This success is consistent with others that have emerged in recent years. The duality

of gauge theory and string theory has led us to expect that many of the failures of string
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theory as a good model of the physics of QCD are due not to having the wrong string

theory, but to putting the right string theory on the wrong space-time background, namely

flat Minkowski space. It is now known that much better phenomenological string models

for QCD are given by string theory on certain curved spaces. The result just described

implies that at large N , vanishing beta function, and t = 0, the form of the BFKL result

may be interpreted as the Regge physics of a string theory compactified to AdS5, in the

form of diffusion along the curved fifth dimension. The only substantial difference between

the small ’t Hooft coupling result (1.6) and the large ’t Hooft coupling result (1.8) lies in

the coefficients; compare eqs. (1.5) and (1.9). This is strongly suggestive that the kernel

is always of the form (1.6), with the overall power j0 and the diffusion constant D being

continuously varying functions of αN . Indeed, such a result follows from the constraints

of conformal invariance.

The extension of the single-Pomeron kernel to nonzero t < 0 (physical scattering at

small angles) is quite involved in the BFKL regime [28, 29]. By contrast, using string-theory

methods, the kernel in the strong-coupling approximation is easily derived. We will argue

that aspects of our result are necessarily true in an asymptotically conformally-invariant

theory. As before, the result depends on coefficients that are functions of the ’t Hooft

coupling. The weak- and strong-coupling results at finite t have the same formal structure,

and qualitative similarities. They differ in that at weak coupling the Pomeron can couple

to individual partons, while at strong coupling it couples only to the entire hadron, in

analogy with the physics of deep inelastic scattering in the two regimes [30].

In sections 2, 3 and 4, we will derive the result (1.8), and its extension to t < 0, in three

ways. The first uses a low-brow approach which returns to the results of earlier work [30].

The second carefully obtains the result from string theory in conformal gauge, introduces

Pomeron vertex operators as computational tools in string theory, and discusses a number

of underlying theoretical aspects of the calculation. The final derivation uses light-cone

gauge.

Next we will generalize our results to include effects of confinement, first considering

theories whose ultraviolet physics is conformally invariant (section 5), and then considering

theories with a logarithmically running coupling (section 6). We use string theory to study

the full analytic structure of the single-Pomeron exchange amplitude, for all values of t.

For t ≪ −Λ2, with Λ of order the confinement scale, the kernel is nearly independent

of confinement, and our results from the conformal case require no modification if the

beta function vanishes in the ultraviolet, and a more substantial but model-independent

modification if the coupling runs. For t ≫ +Λ2 the Regge trajectories on which the

hadronic resonances sit can be identified and studied. It is straightforward to compute

the hadron spectrum using differential equations which match directly to the equations

governing the diffusion at t < 0. This makes it possible to answer long-standing questions

concerning the behavior, as t is taken from positive to negative, of the Regge trajectories

α(t). Details of the Regge-trajectories are model-dependent, but their presence and their

general t-dependence are not. The region |t| ∼ Λ2, which dominates total cross-sections

and near-forward scattering, is the most model-dependent. In addition to computing the

kernel’s asymptotic form at large s, we also note various transient effects which are present

– 6 –
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for s not asymptotically large, some of which are also model-independent.

Our all-t results for the analytic behavior of the single-Pomeron exchange amplitude

are consistent with what is known from a combination of data at positive t and analytic

work in field theory at negative t. The structure of our formalism makes concrete the

intuitive approach suggested in [31], which suggested a unified treatment of the Pomeron

and developed an intuitive picture of diffusion in both hard and soft regimes.4 We believe

our result is the first, however, to connect the positive and negative t behavior in a reliable

and consistent theoretical framework.5

2. A heuristic derivation

In ref. [25], it was argued that scattering amplitudes in gauge theories with good string

dual descriptions can be expressed in a simple general form, in which the underlying ten-

dimensional amplitude is essentially local and the four-dimensional amplitude is given by

a coherent sum over scattering anywhere in the six transverse dimensions. In this section

we will apply this to scattering in the Regge limit. We will see that at a certain point the

approximation breaks down, and we will need to make an educated guess as to the correct

amplitude. In the next section we will make a more systematic world-sheet analysis, seeing

why the local approximation breaks down and how to correct it.

For conformally invariant gauge theories, the metric of the dual string theory is a

product6 AdS5 × W ,

ds2 =
r2

R2
ηµνdxµdxν +

R2

r2
dr2 + ds2

W , (2.1)

where 0 < r < ∞. We use xM for the ten-dimensional coordinates, or (xµ, r, θ) with θ

being the five coordinates on W , or (xµ, ym) when we discuss all six transverse coordinates

y together. Our convention is that the metric signature is spacelike-positive. For the dual

to N = 4 supersymmetric Yang-Mills theory [24] the AdS radius R is

R2 ≡
√

λα′ = (4πgstringN)1/2α′ = (g2
YMN)1/2α′ , (2.2)

and W is a 5-sphere of this same radius. By a “good string dual description” we mean

that λ ≫ 1, so that the spacetime curvature is small on the string scale, and gstring ≪ 1 so

that we can use string perturbation theory.

We are interested in gauge theories that are conformally invariant at high energy but

with the invariance broken at low energy, resulting in a mass gap and confinement. Roughly

speaking, this means that the dual string metric is of the AdS form but with a lower cutoff

4See also [19], section 5.6.
5Our results contradict the earliest attempts [32] to connect positive and negative t, where it was

proposed that Regge trajectories at positive t flatten out and extend to negative integer values of j as

t → −∞. Our approach and conclusions differ as well from refs. [33, 34]; in particular [34] finds a Pomeron

intercept that is independent of λ. The conjectures of [35] also differ from our results, though by not as

great a degree; we will see below there is a certain commonality of viewpoint at the point of departure,

though in the end our approach and conclusions are distinct from theirs.
6More generally it could be a warped product, where the AdS metric is multiplied by a function of the

coordinates on W .
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on the coordinate r, so that r0 < r < ∞. More precisely, the product structure breaks

down in the infrared, and we must use a general warped product

ds2 = GMNdxMdxN = e2A(y)ηµνdxµdxν + G⊥mndymdyn . (2.3)

To simplify the discussion we define the radial coordinate by r2/R2 = e2A, so that r2
0/R

2 =

min(e2A). (In models where e2A has more than one local minimum, r is not a good

coordinate, and one should everywhere replace r/R with eA.) The precise metric depends

on the details of the conformal symmetry breaking. Most of the physics that we will study

takes place in the conformal region where the metric is the approximate AdS product (2.1).

Even here we might generalize to geometries that evolve slowly with r, as in cascading gauge

theories and in the running coupling example to be studied in section 6.

Glueballs arise as discrete modes in the six-dimensional transverse ‘cavity.’ For exam-

ple, a scalar glueball created by the operator FµνFµν would have a dilaton wavefunction

Φ(x, y) = eip·xψ(y) . (2.4)

Local operators in the gauge theory also translate into bulk excitations, the difference being

their boundary conditions (non-normalizable rather than normalizable) as r → ∞ [36 – 38].

The Pomeron is a closed string state, and at leading large-N order its properties do not

depend on the open string spectrum. Thus we can study its physics without introducing

branes and open strings, though it will later be useful to do so in order to model quarkonium

scattering and to discuss open string trajectories. The open string wavefunctions are of

the same form (2.4) but with support restricted to whatever branes have been embedded

in the transverse space.

In the string picture, scattering amplitudes are given as usual by path integrals over

string world-sheets embedded in the deformed AdS5×W , with appropriate vertex operators

for the external states. Aside from a few remarks at the end, we will consider only the

leading 1/N approximation, corresponding to spherical world-sheets. In general this would

still be a forbidding calculation, but a great simplification occurs at λ ≫ 1. The string

world-sheet action contains factors of R2 from the spacetime metric and 1/α′ from the string

tension, which combine into R2/α′ =
√

λ. Thus the string world-sheet coupling 1/
√

λ is

small, and the world-sheet path integral is almost Gaussian. It is not exactly Gaussian

because the constant mode on the world-sheet has no quadratic term. We must therefore

separate the fields on the string world-sheet into their zero modes and the remaining

nonzero-mode parts,

XM (σ1, σ2) = xM + X ′M (σ1, σ2) . (2.5)

At fixed xM , the Gaussian integral over the nonzero modes is exactly as one would do in

flat spacetime,7 thus producing the ten-dimensional flat spacetime S-matrix that would be

seen by a local observer (except that the momentum delta function from the zero modes

is missing.) We denote this amplitude iAlocal(x, y). Integrating over the zero mode then

gives the S-matrix

S = i

∫

d4x d6y
√
−GAlocal(x, y) . (2.6)

7The RR backgrounds have scaled away with the curvature, so we are spared dealing with them.
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We define Alocal to be a scalar; the
√
−G then arises from the path integral measure, which

respects coordinate invariance.

The dependence on the external states is implicit, but for high energy scattering it can

be put in a more explicit form. In the wavefunction (2.4), the gradients in the transverse

directions are generally of order 1/R, much less than string scale. In the noncompact

directions we will be considering momenta at least of order the string scale, and in fact

much larger. It follows that the local inertial observer sees momenta directed essentially

in the noncompact directions. In terms of inertial coordinates parallel to the µ axes, the

momenta are

p̃µ =
R

r
pµ . (2.7)

The pµ, which appear in the wavefunction (2.4), are the conserved Noether momenta and

so are identified with the gauge theory momenta, while the p̃µ are the momenta seen by a

local inertial observer. Thus,

Alocal(x, y) → T10(p̃)
∏

ext.
states

eipi·xψi(y) , (2.8)

the flat-spacetime scattering amplitude with momenta p̃ times the product of the wave-

functions at (x, y). The integral over x produces the four-dimensional momentum delta

function. Then, for scattering of scalars, the general local superposition (2.6) becomes

T4 =

∫

d6y
√
−GT10(p̃)

∏

ext.
states

ψi(y) , (2.9)

where S = i(2π)4δ4(Σp)T4. Note that G is the determinant of the full ten-dimensional

metric. For external states with spin, T10 is naturally written with tangent space indices,

and so would be contracted with the external wavefunctions in tangent space form.

The final results (2.6), (2.9) are simple and intuitive, just a coherent superposition

over all possible scattering locations. The scattering is effectively local because the scale of

fluctuations of the string world-sheet is set by α′, which is small compared to the variations

of the geometry. The Gaussian approximation that leads to this local expression is rather

robust. It will break down later in this section, but only because we introduce a competing

large parameter. In the next section we will analyze this breakdown at the world-sheet

level, and see how to correct it.

Now let us apply this to Regge scattering, focusing for simplicity on 2 → 2 scattering

of scalars. Thus s = −(p1 + p3)
2 is taken large, with t = −(p1 + p2)

2 fixed. The local

inertial quantities are

s̃ =
R2

r2
s , t̃ =

R2

r2
t , (2.10)

and so for scattering at a given value of r the ten-dimensional process is also in the Regge

regime. Thus at fixed r we have

T10(s̃, t̃) → f(α′t̃)(α′s̃)2+α′ t̃/2 , (2.11)
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Figure 1: In the ultralocal approximation, the slope of the leading trajectory redshifts from order

one at small r down to zero as r → ∞; trajectories at several different r values, with their different

slopes, are shown. The leading singularity (the singularity with largest j at fixed t) is the usual

linear Regge trajectory for t > 0 but is a constant near 2 for t < 0. The full story is more elaborate,

as will be shown.

with f a process-dependent function. In fact the relevant value of r in the superposi-

tion (2.9) evolves with s but does so only slowly, so we remain well within the regime

where the form (2.11) is valid. Thus we have

T4(s, t) =

∫

d6y
√
−Gf(α′R2t/r2)(α′R2s/r2)2+α′R2t/2r2

4
∏

i=1

ψi(y) . (2.12)

Examining the exponent of s, we see that the intercept, the exponent at t = 0, is 2 just as

in flat spacetime. We also see that the slope, the coefficient of t, depends on r as

α′
eff(r)

2
=

R2α′

2r2
. (2.13)

The 2’s appears in the denominator because this is a closed string trajectory. It is as

though, in this “ultralocal” approximation, the five-dimensional Pomeron gives rise to a

continuum of four-dimensional Pomerons, one for each value of r and each with a different

slope.8 This is illustrated schematically in figure 1.

At large s, the highest trajectory will dominate. For positive t, this would be the one

at the minimum value r0:

α′
eff(t > 0) =

R2α′

r2
0

≡ α′
0 . (2.14)

8The notion of a tension depending on a fifth dimension dates to [39]. The idea of superposing many

four-dimensional Pomerons is conceptually anticipated in the work of [26], and more technically in that

of [35], where an idea similar to that of the next paragraph is considered.
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For negative t, it would be the trajectories at large r. The wavefunctions in the superposi-

tion (2.12) make the integral converge at large r, so at any given s the dominant r is finite,

but as s increases the dominant r moves slowly toward infinity and so we have

α′
eff(t < 0) = 0 . (2.15)

We see that, in this approximation, the dominant trajectory has a kink at t = 0, similar

to (though more abrupt than) the behavior in QCD. Moreover, as also happens in QCD,

the nature of the Pomeron changes. For positive t it sits at small r and so its properties

are determined by the confining dynamics: it is a glueball. At negative t it sits at large r

and so is effectively a very small object, analogous to the tiny (and therefore perturbative)

two-gluon Pomeron of BFKL [26].

However, we can go well beyond the ultralocal approximation. Note that we have two

large quantities, λ and s. In the discussion thus far, we have taken λ large first, making

the Gaussian approximation, and then considered large s within this approximation. But

in order to expose a wider range of QCD-like physics, we would like to keep values of s

which are large compared to λ. More precisely, the interesting physics arises in the limit

λ, s → ∞ ,
ln s√

λ
fixed . (2.16)

Thus s is exponentially large in
√

λ. This is an enormous scale from the point of view of

AdS/CFT physics, but to reach real QCD we must continue to small λ and so the physics

that we find in this regime can become important.

In the regime (2.16) it is necessary to retain terms of order 1/
√

λ in the exponent

2 + α′t/2 of s. Thus in the ten-dimensional momentum transfer t̃ we must keep a term

previously dropped, coming from the momentum transfer in the six transverse directions:

α′t̃ → α′∇2
P ≡ α′R2t

r2
+ α′∇2

⊥P . (2.17)

The transverse Laplacian is proportional to R−2, so that the added term is indeed of order

α′/R2 = 1/
√

λ. The Laplacian acts in the t-channel, on the product of the wavefunctions

of states 1 and 2 (or 3 and 4). The subscript P indicates that we must use the appropriate

curved spacetime Laplacian for the Pomeron being exchanged in the t-channel; we will

determine this shortly.

The inclusion of the transverse momentum transfer leads to several new effects. First,

we will now be able to determine the first strong coupling correction, O(1/
√

λ), to the

intercept 2. Second, we will see that sα′t̃/2 is now a diffusion operator in all eight transverse

dimensions, not just the Minkowski directions, and that this leads to BFKL-like physics.

Third, to obtain the Regge exponents we will now have to diagonalize the differential

operator (2.17), so that instead of the ‘ultralocal’ Pomerons (2.13) that arose in the earlier

regime, we will have a more normal spectral problem.9

9Ref. [35] proposes a different modification of the ultralocal Pomeron spectrum, an Ansatz based on

straight trajectories with a discrete set of slopes. The structure that we find in AdS/CFT, where the

trajectories are given by the eigenvalues of an effective Hamiltonian, is more closely parallel to that found

by BFKL in perturbation theory.
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Now let us determine the form of ∇2
⊥P . We first make some definitions. The scalar

Laplacian is

∇2
0φ = (−G)−1/2∂M

[

(−G)1/2GMN∂Nφ
]

= (r/R)−4G
−1/2
⊥ ∂M

[

(r/R)4G
1/2
⊥ GMN∂Nφ

]

. (2.18)

To study the contribution of the exchange of a transverse traceless field of spin j at high

energies, it is useful to define the Laplacian in light-cone coordinates,

x± =
1√
2
(x0 ± x1) . (2.19)

Specifically, consider the tensor component φ+j , with j indices +, in a frame where the

Pomeron momentum components (p1 + p2)
± vanish. The covariant Laplacian reduces to

∇2
jφ+j = (r/R)j∇2

0

[

(r/R)−jφ+j

]

+
j

4
R+

+φ+j , (2.20)

where R is the Ricci tensor. It is convenient to define also

∆j = ∇2
j −

j

4
R+

+

∆jφ+j = (r/R)j∇2
0

[

(r/R)−jφ+j

]

. (2.21)

As we will see these expressions make sense even for noninteger j; they define an on-shell

Regge exchange process.

The difference between ∆j and ∇2
j is a curvature term and so covariance alone does

not determine the Laplacian to this order. We must resolve this ambiguity in order to

find the shift in the Regge intercept, and so we must look at the dynamics. For transverse

traceless fluctuations of the metric, h++, one finds from the supergravity field equations

that the wave equation in a warped background is

∆2h++ = 0 . (2.22)

A simple way to check this is to note that in the long-wavelength limit the transverse

traceless perturbation becomes h++ = (r/R)2; this is a linear reparameterization of the

background metric (r/R)2ηµν and so must satisfy the correct wave equation. From the

explicit form (2.21) it follows that this is the case for the equation (2.22), and would not be

true with an added curvature term. Now, we have noted that the Regge intercept differs

from 2 by an amount of order 1/
√

λ. If it were exactly 2 we would be sitting on the graviton

pole, so we conclude that ∆P = ∆2 up to a correction of order 1/
√

λ. The Laplacian term

is already of order 1/
√

λ, so the shift is second order and can be neglected:

∇2
P → ∆2 + O(j − 2) . (2.23)

Thus

T4(s, t) =

∫

d6y
√
−Gψ3(y)ψ4(y)f(α′R2t/r2)(α′R2s/r2)2+α′∆2/2ψ1(y)ψ2(y) . (2.24)
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This somewhat heuristic argument will be supported by the more formal treatment in the

next section.10

Now let us work out the explicit form of the amplitude for processes that take place in

the high-energy AdS product region (or in an exactly conformal theory, such as discussed

above eq. (1.1) in the introduction.) In terms of the coordinate u = ln(r/r0), which is ≫ 1

in the high energy region, the metric is

ds2 =
r2
0

R2
e2uηµνdxµdxν + R2du2 + ds2

W . (2.25)

The Laplacian is

α′∆2 =
1√
λ

(∂2
u − 4) + α′

0te
−2u + α′∇2

W

=
1√
λ

[

∂2
u − 4 + z2

0te−2u
]

+ α′∇2
W , (2.26)

where α′
0 = α′

eff(r0) = R2α′/r2
0 is the infrared slope (2.14), and 1/z0 = r0/R

2 is the mass

scale of the lightest glueballs (Kaluza-Klein excitations). Note that 1/
√

α′
0 = λ1/4/z0.

For simplicity we assume that the wavefunctions are independent of W , and consider

first the case t = 0. Then eq. (2.24) becomes

Im T4 = const × s2

∫

du ψ3(u)ψ4(u)/
√

λ)
[

α′
eff(r)s

](∂2
u−4)/2

√
λ

ψ1(u)ψ2(u) . (2.27)

We have canceled a factor of r4 from
√
−G against a factor of r−4 from the Regge amplitude.

In doing this we have assumed that the latter factor acts to the left of the diffusion operator,

rather than being symmetrized with it (the difference is of the same order as the effects

that we are retaining). This follows automatically from the more systematic analysis of

the next section, but in fact one can already deduce it from the symmetry of the diffusion

kernel, which would not hold with any other ordering.

The amplitude (2.27) will indeed be dominated by large u provided that one or more

wavefunctions are strongly peaked at large u (as is the case for quarkonium states or

external operators of large momentum), and also provided that s is not too large (else the

diffusion will reach the confinement scale). The latter effect will be considered in more

detail in section 5.

The s-dependence now takes the form

s2+(∂2
u−4)/2

√
λ . (2.28)

This gives diffusion in u over a time

τ =
1

2
√

λ
ln

(

[

α′
eff(r̄)

]

s
)

. (2.29)

10In flat space, the function f has a pole at zero, from massless t-channel exchange. In a more precise

treatment, we need to replace the argument of f with the curved-spacetime propagator α′∆2. See section 3.2.

In most cases we are interested in the imaginary part of T , and Im f(0) is finite.
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where r̄ is an averaged value of r appropriate to the particular physical process.11

Recall that a diffusion operator resembles a Schrödinger operator in imaginary time,

and can be similarly treated. We need to solve

HΨE(u) = [−∂2
u + V (u)]ΨE(u) = EΨE(u) (2.30)

with V (u) = 4. This has the same eigenstates as a free particle; its delta-function normal-

izable eigenstates are eiνu for −∞ < ν < ∞, with eigenvalues E = 4 + ν2. That is, this

operator has a continuum of states with a continuum of energies — a cut in the E plane

starting at 4. The operator 2 + (∂2
u − 4)/2

√
λ therefore has eigenvalues

j = j0 −Dν2 (2.31)

with

j0 = 2 − 2√
λ

, D =
1

2
√

λ
. (2.32)

Thus there is a cut in the j plane ending at j0. This is the same behavior as found by

BFKL in perturbative contexts, and we can identify j0 as the strong coupling limit of the

BFKL exponent. This exponent has also been derived recently in ref. [40]; we will discuss

this work more fully in section 3.3.

The high-s behavior of amplitudes is roughly of the form sj0, but this would be strictly

true only if the leading eigenvalue of ∆2 were discrete, so that the leading singularity in

the j plane would be a pole rather than a cut. The precise form is

Im A(s, t = 0) ∝
∫

du du′ ψ3(u)ψ4(u)K(u, u′, τ)ψ1(u
′)ψ2(u

′) (2.33)

where

K(u, u′, τ) = sj0K0(u, u′, τ) (2.34)

and K0(u, u′, τ) is the diffusion (heat) kernel

K0(u, u′, τ) = eτ∂2
uδ(u − u′) =

∫ ∞

−∞

dν

2π
eiν(u−u′)e−ν2τ

=
1

2
√

πτ
e−(u−u′)2/4τ , (2.35)

11While the precise choice of r̄ is a subleading effect, confusion might arise were it not addressed here.

In particular, r̄ is not, in general, r0. In this and the earlier equations we have retained α′
eff(r) to a small

power. This is necessary for good form with units, but there is also some physics in it. We could imagine

that at the values of r relevant to the physics, ln(r̄/r0) may be large enough that we would wish to retain

effects of order ln(r̄/r0)/
√

λ; keeping α′
eff (r̄) does this. If ψ1ψ2 and ψ3ψ4 are peaked at a common scale

r̄, we can replace α′
eff(r) with α′

eff(r̄); any correction is higher order in 1/
√

λ. If they are peaked at two

different scales r1 and r3 then we can replace it with the geometric mean of α′
eff(r1) and α′

eff(r3). Thus the

diffusion time appearing in eτ∂2
u is, more generally, to be taken as

τ =
1

2
√

λ
ln

“

s
q

α′
eff(r1)α′

eff (r3)
”

.
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where again τ is defined in (2.29). This result is of the form (1.8), and, as discussed in

the introduction, is similar in form to that of [17, 18]. Note that it is consistent with the

ultraviolet conformal symmetry of the field theory: scale invariance (translation of the u

coordinate) and inversion symmetry (reflection of the u coordinate) require dependence

only on (u − u′)2.
Let us now consider the kernel at nonzero t < 0, working in the regime u, u′ large and

positive (r ≫ r0), and with |t| ≫ Λ2. In this regime the kernel is determined only by the

conformally-invariant region of the gauge theory, and is independent of confinement effects,

which we will treat later. This problem was first solved in the BFKL context in position

space [28]. The result we obtain here bears some resemblance to the form anticipated

in [31] and recently reconsidered in [41]. We obtain it directly in momentum space.

From (2.24) and (2.29), the exponential operator appearing in the kernel at t ≤ 0 is (at

leading order in ln s) of the form e−Hτ , where H is the Hamiltonian for Liouville quantum

mechanics

−
√

λα′∆2 ≡ H = −∂2
u + V (u) (2.36)

V (u) = 4 − z2
0te−2u. (2.37)

Since t < 0 here, this is an exponentially growing potential as u decreases. If z2
0 |t| =

|t|/Λ2 ≫ 1 the particle is repelled from the small-u region, so confinement effects are highly

suppressed and the calculation becomes identical to the computation in a conformally

invariant theory. The eigenvalue spectrum for H determines the location of the singularities

in the j-plane, where j = 2 − E/2
√

λ. There is a continuum beginning at E = 4, with

eigenvalues E = 4 + ν2, and corresponding eigenfunctions,

ψ(ν, u) =
√

2/π Kiν(z0

√

|t|e−u)/Γ(iν) , ν > 0 . (2.38)

(For t = 0, this spectrum reduces to the free particle momentum states eiνu.) Thus,

independent of t, there is a cut in the j plane beginning at E = 4, that is, j = j0 = 2−2/
√

λ.

The kernel itself, however, has nontrivial t-dependence, since the exponential potential

suppresses the eigenfunctions in regions where u ≪ ut ≡ ln(z0

√

|t|). The kernel can be

written [42]

K0(u, u′, τ, t) =
2

π2

∫ ∞

0
dν ν sinhπν Kiν(z0|t|1/2e−u)K−iν(z0|t|1/2e−u′

)e−ν2τ . (2.39)

This kernel is exponentially suppressed if either u or u′ is much less than ut.

For u, u′ ≫ ut, the behavior of the kernel at small τ resembles the t = 0 kernel, while

for τ ≫ uu′ the kernel falls12 to zero as τ−3/2. This is due to the reflection of the diffusion

12More precisely, at fixed τ and large u, u′ ≫ ut, perturbation theory around the t = 0 case yields

K0(u, u′, τ, t) =
1

2
√

πτ
e−

(u−u
′)2

4τ e
τ(z2

0t)
(e−2u

−e
−2u

′

)

2(u−u
′)

At large τ (for fixed u, u′ ≫ ut) the kernel is dominated by the lowest mode, so for
√

τ ≫ u, u′ ≫ ut

K0(u, u′, τ, t) ≃ 1

2
√

πτ 3
K0(z0

√
−te−u)K0(z0

√
−te−u′

) .
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off the exponentially rising potential. Indeed, the kernel is moderately well-approximated

by the t = 0 kernel combined with reflection off a wall at u = ut with a Dirichlet boundary

condition. To see this, it is useful to write Kiν(x) = (iπ/2)[Iiν (x) − I−iν(x)]/ sinh πν, so

that incoming (“L”, for left-moving) and reflected waves (“R”-moving) are more explicit.

The kernel now is a sum of LL, LR, RL and RR subkernels. Interference between the

LL,RR terms and the LR,RL terms removes the 1/ν pole as ν → 0, so the integrand

goes as ν2 near ν = 0 and gives τ−3/2 behavior. Meanwhile, the t = 0 kernel is obtained

by going to large positive u, so that the barrier at u = 0 is infinitely distant and the Iiν

become plane waves; the LR and RL interference terms are exponentially suppressed after

the ν integration, while the LL and RR terms can be seen as the ν > 0 and ν < 0 parts of

the integral in (2.35). The 1/ν pole multiplying the Iiν(x) is no longer cancelled, and the

standard τ−1/2 behavior of a diffusion kernel is obtained.

This τ−3/2 feature is very general and survives even when conformal symmetry breaking

is introduced in the infrared, as we will see later. It corresponds to having a softened branch

point in the j plane compared to the t = 0 conformal kernel. More precisely, the “partial-

wave” amplitude, obtained by a Mellin transform of K(s), has a vanishing square-root type

singularity,

K̃(j, t, u, u′) ∼
√

j − j0 + regular. (2.40)

By contrast, at t = 0, where as we just saw the ν2 factor is cancelled giving a non-vanishing

contribution at ν = 0, there is a divergent singularity in j,

K̃(j, t, u, u′) ∼ 1√
j − j0

+ regular. (2.41)

Correspondingly, the large τ behavior is sj0/τ1/2 at t = 0. Thus, the branch cut in the

j-plane begins at a t-independent point j0, but the nature of the cut differs at negative t

from its form at t = 0.

The same physics — the reflection of the diffusion off an effective barrier at e2u ∼
k2
⊥ ∼ |t| — leads to identical powers of τ at weak coupling. The barrier is absent at t = 0,

so the eigenmodes are just plane waves in ln k⊥, giving the τ−1/2 behavior of eq. (1.6). For

t < 0, however, the eigenmodes are a combination of incoming and reflected modes, with

the leading τ−1/2 behavior removed by destructive interference between them.

To see this, consider the standard weak-coupling BFKL calculation at finite t [28, 29].

The amplitude is expressed in terms of a t < 0 kernel and impact factors ΨA,ΨB ,

Im A(s, t)

s
=

G
(2π)4

∫

d2p⊥d2p′⊥ ΨA(p⊥, k⊥) K(s, k⊥, p⊥, p′⊥) ΨB(p′⊥, k⊥) (2.42)

where

K(s, k⊥, p⊥, p′⊥) =
1

(2π)6

∫

dν

[

ν

ν2 + 1/4

]2

eαsχ(ν)τψν(p⊥, k⊥) ψ∗
ν(p

′
⊥, k⊥) . (2.43)
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Here ψν is a conformal wave function, an eigenfunction of the homogeneous BFKL equa-

tion.13

Care must be taken in comparing the weak- and strong-coupling representations since

the effective degrees of freedom used are different. However, since conformal invariance

plays an essential role here, it is not surprising that they share many qualitative and

some quantitative similarities. In particular, the Bessel function in ψν(p⊥, k⊥), while not

identical in form to the one appearing in (2.39), shares the feature that it can be written

as an incoming and an outgoing wave, and that the t = 0 kernel is obtained by effectively

dropping the interference between them, resulting in a change in the ν-dependence at

small ν. Thus the analytic structure in the j-plane, and the τ dependence, of the weak-

and strong-coupling kernels agree.

We have not attempted to obtain more precise connections with weak coupling cal-

culations — as is clear from the above formulas, the weak-coupling kernel at finite t is

structurally more complicated than the t = 0 case — but we believe it should be possible

to do so.

3. A systematic derivation

The result in the previous section is simple and intuitive, but it is useful to present a more

systematic derivation. For one thing we have begun with an expression (2.9) in which the

scattering is local in the bulk, and then (when s is taken large with λ) we have found a

diffusive effect that makes the scattering arbitrarily nonlocal in the bulk. As a result we

have had to guess about such things as operator ordering. For another, we are retaining all

orders in ln s/
√

λ. From the point of view of the world-sheet theory this is a resummation

of perturbation theory, and we would like to determine its exact nature. We will see that

it is something familiar: that the large s amplitudes will involve world-sheet distances of

order 1/s, so this is simply a renormalization group improvement in the world-sheet field

theory.

3.1 Regge behavior in flat spacetime

We first analyze Regge scattering in flat spacetime in a rather general way which may have

other applications. For any process in which the external particles (which may include

13Our notation corresponds to a BFKL kernel that, as a four-point function, carries external transverse

momenta p⊥ ± k⊥/2 and p′
⊥ ± k⊥/2, with t = −k2

⊥; it has a dimension of [length]6. We have retained

only the leading order term, i.e., the so-called n = 0 term, for the BFKL kernel, with χ in eq. (2.43)

related to ĵ of (1.3) by ĵ = 1 + αsχ. To match the formulas in the BFKL literature, e.g., [19], we have

normalized the dummy variable ν in a way which differs from that used in the rest of the paper by a factor

of 2, as noted earlier. We find that the conformal wave function can be expressed, defining the functions

a2
1 ≡ x(1 − x)(k2

⊥/p2
⊥), and a2

2 ≡ |p⊥ + (x − 1
2
)k⊥|2/p2

⊥, as

ψν(p⊥, k⊥) =
(2π)(|k⊥|/2)2iν

Γ2( 1
2

+ iν)

Z 1

0

dx
p

x(1 − x)

Z

∞

0

dr r2J0(a2|p⊥|r)K−2iν(a1|p⊥|r)

=
(2π)2(ν2 + 1/4)(k⊥/2)2iν

cosh πν Γ2( 1
2

+ iν)

Z 1

0

dx

p3
⊥

[x(1 − x)]2
F (−iν + 3/2, iν + 3/2; 1;−a2

2/a2
1) .
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D-branes as well as strings) can be divided into two sets that are at large relative boost,

we derive the leading behavior of the amplitude.

3.1.1 Example: bosonic string tachyons

Consider the Virasoro-Shapiro amplitude, for bosonic string tachyon scattering:14

A =

∫

d2w |w|−4−α′t/2|1 − w|−4−α′s/2 . (3.1)

When s and t are both large, the integrand has a saddle point at w = t/(s + t). When the

integral is appropriately defined by analytic continuation, this point indeed dominates [43].

If this were to continue to apply for large s at fixed t, then w of order s−1 would dominate

in the Regge regime. This is true but the integral can no longer be evaluated by the saddle

point method, rather we must integrate it explicitly in the small-w region:

A ∼
∫

d2w |w|−4−α′t/2eα′s(w+w̄)/4

= 2π
Γ(−1 − α′t/4)
Γ(2 + α′t/4)

(e−iπ/2α′s/4)2+α′t/2 . (3.2)

The integral is defined by continuation from −4 > α′t > −8 and positive imaginary s.

Since w is small we should be able to reproduce the above Regge behavior via the

OPE,

eip1·X(w,w̄) eip2·X(0) ∼ |w|−4−α′t/2eik·X(0) , k = p1 + p2 . (3.3)

However, this reproduces only the first term in the integrand (3.1): it gives the tachyon

pole but not the Regge behavior. The point is that because sw is of order one we must

retain additional terms in the OPE, which are normally subleading. The result is still quite

simple:

eip1·X(w,w̄) eip2·X(0) Regge∼ |w|−4−α′t/2eik·X(0)+ip1·(w∂+w̄∂̄)X(0) . (3.4)

Contractions involving p1 · (w∂ + w̄∂̄)X(0) will generate a factor of s for each factor of w.

We insert the OPE into the vertex operator amplitude,

〈eip1·X(w,w̄)eip2·X(0)eip3·X(1)eip4·X(∞)〉
∼ |w|−4−α′t/2

〈

eik·X(0)+ip1·(w∂+w̄∂̄)X(0) eip3·X(1) eip4·X(∞)
〉

.

(3.5)

Evaluating the contractions reproduces the integrand in eq. (3.2). It is also interesting to

instead carry out the w integral first, at the operator level:

∫

d2w eip1·X(w,w̄) eip2·X(0) Regge∼ Π(α′t)eik·X(0)
[

p1·∂X p1·∂̄X(0)
]1+α′t/4

, (3.6)

14In order to keep equations uncluttered, we adopt simple overall normalizations in eqs. (3.1), (3.6), but

keep all later equations normalized with respect to these. For the same reason we omit the momentum

delta functions in the translationally invariant directions.

– 18 –



JH
E

P
1

2
(2

0
0

7
)0

0
5

where we have defined

Π(α′t) = 2π
Γ(−1 − α′t/4)
Γ(2 + α′t/4)

e−iπ−iπα′t/4 , (3.7)

with t = −k2. Inserting this matrix element into the expectation value (3.5) immediately

gives the Regge amplitude (3.2).

The result (3.6) displays the essential idea that we will need for analyzing Regge

behavior in curved spacetime as well. We can think of the operator on the right as a

Pomeron vertex operator. For t = −4/α′ it is the tachyon, for t = 0 it is the graviton,

and so on. Note that it is always on shell in the sense of satisfying the physical state

conditions,15 even when t is not the mass-squared of a physical particle, but it is outside

the normal Hilbert space because of the fractional power. In spite of the importance of

Regge physics in the history of string theory, we are unaware of any previous introduction

of such a vertex operator.

3.1.2 Generalizations

The result (3.6), derived for four tachyons, can be broadly generalized. First, let us note

that the OPE (3.4) is essentially the same for any pair of vertex operators,

V1(w, w̄)V2(0) ∼ C12|w|−4−α′t/2eik·X(0)+ip1·(w∂+w̄∂̄)X(0) . (3.8)

The tensor terms in the vertex operators contract to give a constant C12 times a power of

|w|, and then the rest is as for the tachyons; the final power of |w| depends only on the

momentum transfer. We can again integrate this directly in operator form,
∫

d2w V1(w, w̄)V2(0) ∼ C12 Π(α′t)eik·X(0)
[

p1·∂X p1·∂̄X(0)
]1+α′t/4

. (3.9)

The constant C12 can be interpreted as the coupling of the Pomeron to states 1 and 2; we

will express this coupling in another form in eq. (3.19) below.

Having the relation (3.9) in operator form immediately allows a broad generalization:

we can replace the tachyon vertex operators V3,V4 with any number l ≥ 2 of vertex

operators, for any collection of string states. The Möbius group fixes V2 plus two of the l

additonal vertex operators. Let W denote the product of the l vertex operators and their

l − 2 position integrations. Then the standard string amplitude is

A12W ∼ C12 Π(α′t)
〈

eik·X(0)
[

p1·∂X p1·∂̄X(0)
]1+α′t/4 W

〉

. (3.10)

This captures the asymptotic behavior as the vertex operators in W are boosted to some

large rapidity y, relative to V1 and V2. Then

ey = s/s0 , y = 2
√

λ τ + const , (3.11)

where s0 is the center of mass energy-squared when the relative boost is zero and τ is the

diffusion time introduced earlier. Contractions of ∂X(0) or ∂̄X(0) in the Pomeron vertex

15To be precise, we should replace 2p1 with p1 − p2 = p12; these are equivalent in the Regge limit but p12

is exactly orthogonal to k.
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operator with fields in W are of order ey, producing a factor of e(2+α′t/2)y . We will refer

to V1,2 as right-moving and W as left-moving along the direction of the boost.

The results so far are still special, in that we have an arbitrary left-moving process

but on the right-moving side there is just 1-to-1 scattering. To derive the Regge amplitude

in full generality, let WR and WL denote arbitrary sets of lR and lL vertex operators

together with their associated lR − 2 and lL − 2 world-sheet integrations. This leaves a

single integration over world-sheet coordinates, corresponding to an overall scaling of the

coordinates in WL. The string amplitude is then

AWLWR
=

∫

d2w
〈

WRwL0−2w̄L̃0−2WL

〉

, (3.12)

where L0 and L̃0 are the right- and left-moving Virasoro operators which generate the

world-sheet scale transformations,

L0 =
α′

4
k2 + N , L̃0 =

α′

4
k2 + Ñ , (3.13)

and N and Ñ are the right- and left-moving excitation levels. This is a standard way

of organizing string amplitudes for purposes of discussing unitarity: the integral over the

region |w| < 1 produces the closed string propagator in the t-channel,

δL0−L̃0

L0 + L̃0 − 2
. (3.14)

Note also that the OPE (3.4) can similarly be written

eip1·X(w,w̄) eip2·X(0) Regge∼ |w|−4−α′t/2eik·X(0)+ip1·(w∂+w̄∂̄)X(0)

= wL0−2w̄L̃0−2eik·X(0)+ip1·(∂+∂̄)X(0) ; (3.15)

for the bosonic string N and Ñ just count the number of ∂ and ∂̄ in the vertex operator.

We wish to study the amplitude in the limit that the two sets differ by a large boost

in the ± plane, so that the momenta in WR have large + components and the momenta in

WL have large − components; the exchanged momentum k is orthogonal to the ± plane.

The generalization of the OPE is to insert a complete set of string states in the matrix

element (3.12) but again to retain only those that survive in the Regge limit sw ∼ 1:

AWLWR
∼

∞
∑

m,n=0

∫

d2w
2m+nwm−2−α′t/4w̄n−2−α′t/4

α′m+nm!n!
〈

WR eik·X(∂X−)m(∂̄X−)n
〉〈

e−ik·X(∂X+)m(∂̄X+)nWL

〉

. (3.16)

Note that ∂X, ∂̄X are the vertex operator factors for the string excitations α−1, α̃−1. After

inserting the states, we have explicitly evaluated wL0−2w̄L̃0−2 acting on the intermediate

vertex operator. The next step is typographically tricky. We note that all the m-dependent

terms combine to form an exponential, and similarly all the n-dependent terms:

exp
(

2w∂X−
R ∂X+

L /α′ + 2w̄∂̄X−
R ∂̄X+

L /α′) , (3.17)
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where the subscripts indicate whether the operator appears in the expectation value with

WR or the one with WL. Acting now with
∫

d2w |w|−4−α′t/2 (where the integral is defined

by continuation as before), the exponential (3.17) becomes

Π(α′t)(2∂X−
R ∂̄X−

R/α′)1+α′t/4(2∂X+
L ∂̄X+

L /α′)1+α′t/4 (3.18)

Inserting this back in the amplitude gives

AWLWR
∼ Π(α′t)×

〈

WR eik·X(2∂X−∂̄X−/α′)1+α′t/4
〉 〈

e−ik·X(2∂X+∂̄X+/α′)1+α′t/4WL

〉

.

(3.19)

We could have guessed this by symmetrizing the earlier result (3.10). We can also make the

Regge behavior more explicit by boosting the states WL and WR back to their approximate

rest frames (denoted by a subscript 0), so that the large boost ey = s/s0 enters explicitly:

AWLWR
∼ Π(α′t)(s/s0)

2+α′t/2
〈

WR0 V−
P

〉 〈

V+
P WL0

〉

. (3.20)

The result (3.20) has a simple interpretation as a Pomeron propagator, of the form

Π(α′t)(s/s0)
2+α′t/2, times the couplings of the Pomeron to the two sets of vertex oper-

ators, with Pomeron vertex operator

V±
P = (2∂X±∂̄X±/α′)1+α′t/4 e∓ik·X . (3.21)

Note that this formalism works equally well for Regge scattering of strings and D-

branes or of D-branes and D-branes. For coupling to a D-brane one simply replaces the

vertex operators in W with a world-sheet hole with appropriate boundary conditions, and

the factorization analysis goes through unchanged. Thus, scattering processes involving

ultrarelativistic D-branes will also display Regge behavior [44].

This analysis extends readily to the superstring. Let us start for simplicity with the

OPE of two type II tachyons; these have the wrong GSO projection but their product is

then GSO-allowed. We work in the 0 picture because this is most closely analogous to the

bosonic string and to other formulations of the superstring. Then
∫

d2w d2θ d2θ′ eip1·X(w,θ) eip2·X(0,θ′)

∼
∫

d2w d2θ d2θ′ |w − θθ′|−2−α′t/2eik·X(0,θ′)+ip1·(w∂w+[θ−θ′]∂θ′)X(0,θ′)

= Π̂(α′t)
∫

d2θ′ eik·Xp1·Dθ′X p1·Dθ̄′X(p1·∂Xp1·∂X)α
′t/4|0,θ′

≡ Π̂(α′t)V̂P . (3.22)

The Pomeron vertex operator has the same bosonic part as in the bosonic string, together

with fermionic terms as required by world-sheet supersymmetry. The Pomeron propagator

no longer has a tachyon pole:

Π̂(α′t) = 2π
Γ(−α′t/4)

Γ(1 + α′t/4)
e−iπα′t/4 . (3.23)
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This result, derived for the simplest vertex operators, can then be generalized broadly as

in the bosonic case:

AWLWR
∼ Π̂(α′t)(s/s0)

2+α′t/2
〈

WR0 V̂−
P

〉〈

V̂+
P WL0

〉

. (3.24)

3.2 Regge behavior in warped spacetime

Now let us try to repeat these steps in a warped metric

ds2 = e2A(y)ηµνdXµdXν + ds2
⊥ . (3.25)

We again start with the bosonic string to avoid tensor complications.16 In the Gaussian

limit the string wavefunctions (2.4) translate directly into vertex operators eip·Xψ(Y ),

where the capital letters denote world-sheet fields. We start with the OPE

eip1·X(w,w̄)ψ1(Y (w, w̄)) eip2·X(0)ψ2(Y (0))
Regge∼ wL0−2w̄L̃0−2eik·X(0)+ip1·(∂+∂̄)X(0)ψ1(Y (0))ψ2(Y (0)) . (3.26)

This is identical in form to the flat spacetime OPE (3.15): we naively multiply the vertex

operators, keeping only those terms that survive in the Regge limit, and the w-dependence

arises from the Virasoro generators. Now, however, we need to go beyond the Gaussian

approximation to include terms of order (ln s)/
√

λ ∼ | ln w|/
√

λ. In the form (3.26) it is

clear how this is done: we must keep terms of order 1/
√

λ in the world-sheet dimension

L0. This is precisely the renormalization group improvement referred to at the beginning

of the section.

In order to diagonalize L0 we must go to a basis of definite spin,

V(j) = (∂X+∂̄X+)j/2eik·Xφ+j (Y ) , (3.27)

working again in the frame where the large momentum is p+. The operator on the right of

the OPE (3.26) can be expanded in such a basis. The one-loop world-sheet dimension of

V(j) (which includes all terms up to second derivatives in space-time) must be of the form

L0V(j) = L̃0V(j) = (∂X+∂̄X+)j/2

[

j

2
− α′

4
(∆j + δj)

]

eik·Xφ+j(Y ) , (3.28)

where ∆j is the covariant Laplacian defined before and δj is an unknown shift of order R−2.

The calculation of δj is an interesting exercise in string theory, which perhaps already exists

in some form in the literature, but for our present purposes we can argue as in the previous

section. That is, for j = 2 we know from the low energy field equations that δ2 = 0, and

the relevant j are close to 2, and so

L0V(j) = L̃0V(j) = (∂X+∂̄X+)j/2

[

j

2
− α′

4
∆j

]

eik·Xφ+j (Y ) + O(1/λ) . (3.29)

16We do not know of any AdS5 solutions for the bosonic string, so this is slightly formal. However, there

is an AdS3 × S3 × T 20 solution, to which the analysis at t = 0 applies. This solution might be interesting

to explore further because the world-sheet CFT is exact.
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Note that we are keeping ∆j = e(j−2)A∆2e
−(j−2)A rather than the simpler ∆2 for good

form, because it has the correct covariance properties.

Applying this to the OPE, eq. (3.26), the j-dependent factors, e±jA in ∆j can be

combined as (e2[A(YL)−A(YR)]∂X+∂̄X+)j/2, where we have again introduced an ordering

notation, such that A(YL) and A(YR) are understood to act to the left or right of the

Laplacian, respectively. Then

eip1·X(w,w̄)ψ1(Y (w, w̄)) eip2·Xψ2(Y )

= e{ik·X+ie[A(YL)−A(YR)]p1·(w∂+w̄∂̄)X}e−2A(Y )|ww̄|−2−α′∆2/4e2A(Y )ψ1(Y )ψ2(Y )

= e{ik·X+ie[A(YL)−A(YR)]p1·(w∂+w̄∂̄)X}F (Y ) , (3.30)

where

F (y) = e−2A(y)|ww̄|−2−α′∆2/4e2A(y)ψ1(y)ψ2(y) .

Fields without arguments are understood to be at the origin, for compactness.

Now consider the matrix element

〈V1(w, w̄)V2(0)V3(1)V4(∞)〉

=
〈

eik·X+ieA(YL)−A(YR)p1·(w∂+w̄∂̄)XF (Y )eip3·X(1)ψ3(Y (1)) eip4·X(∞)ψ4(Y (∞))
〉

.

(3.31)

We next evaluate this in the semiclassical approximation. At the saddle point,

XM (σ1, σ2) = xM is constant on the world-sheet: to first approximation we just replace

the fields with the zero modes. The leading contribution of the p1 · ∂aX in the exponent

comes from their contraction with p3 · X(1), where the propagator is evaluated at fixed

values of the zero modes. The action for the Xµ is multiplied by e2A(y)/α′, so this gives

−α′

2
e−A(YL)−A(YR)p1 · p3 = [α′

eff(YL)α′
eff (YR)]1/2 s

4
≡ ᾱ′ s

4
(3.32)

for each contraction. Integrating the zero mode with weight
√
−G = e4A

√
G⊥, the matrix

element becomes

const.×
∫

d6y
√

G⊥ e2A(y)ψ3(y)ψ4(y)e−ᾱ′s(w+w̄)/4|ww̄|−2−α′∆2/4e2A(y)ψ1(y)ψ2(y) . (3.33)

Finally, taking
∫

d2w gives

T4 = const.×
∫

d6y
√

G⊥ e2A(y)ψ3(y)ψ4(y)Π(α′∆2)(ᾱ
′s)2+α′∆2/2e2A(y)ψ1(y)ψ2(y) . (3.34)

Noting that α′∆2 ≈ α′(r)t, this reproduces the earlier result (2.24). The operator ordering

issue raised there has been resolved, and in particular the kernel is symmetric (note that

∆2 = e2A(
√

G⊥
−1

)∂Me−4A
√

G⊥GMN∂Ne2A). Also, the appearance of ᾱ′ confirms the

assertions about the diffusion time that were made in footnote 11.

The logic of the world-sheet calculation is exactly as in any weakly coupled field theory

for a correlation function with a large hierarchy of separations: we evaluate the OPE in

lowest order, renormalize the resulting operators with the one loop anomalous dimension,

and evaluate the final matrix element to lowest order. The result (3.34) is extended readily

to the superstring and to any external scalars.
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3.3 BFKL and anomalous dimensions

Our result on j0 − 2 is situated in a wider context. The study of the relationship between

Regge singularities and anomalous dimensions of certain operators has a long history [45].

In N = 4 supersymmetric Yang-Mills theory, it has been argued that properties of BFKL

and DGLAP operators are related by analyticity [46 – 49]. We can understand this con-

nection also from the string theory side of the duality. In this subsection we do so in the

large-λ approximation that we have used throughout; in the next we argue that it extends

to all values of λ.

This discussion takes place in the conformal limit, where the spacetime is AdS5 × W .

The AdS/CFT dictionary relates string states to local operators in the gauge theory [36, 37].

Consider the vertex operator

(∂X+∂̄X+)j/2eik·Xφ+j (Y ) , φ+j (Y ) = eζU . (3.35)

That is, the transverse part of the vertex operator depends only on the radial coordinate U .

Under scale transformations δU = ǫ, δXµ = −ǫXµ, this has weight ζ − j. It corresponds

to a perturbation
∫

d4xO , (3.36)

where O is an operator of spin j and dimension ∆; the scale transformation determines

that

∆ − 4 = ζ − j . (3.37)

The physical state conditions L0 = L̃0 = 1 determine ζ and hence ∆ as a function of j.

This is the ‘nonnormalizable mode’ [36, 37]; the space-time inversion symmetry implies

a second solution ∆ → 4 − ∆. The vertex operators (3.35) for integer j ≥ 2 (in the

IIB theory) correspond to the lightest string states of given spin, and so are dual to the

lowest dimension operators of those spins. These would be the leading twist operators,

whose gauge part is tr(F+µDj−2
+ F+

µ). Thus the physical state conditions determine the

dimensions of the leading twist operators.

On the other hand, the vertex operators (3.35) are of the same form as the Pomeron

vertex operator that controls the Regge behavior. As in eqs. (2.30)–(2.35), we take plane

wave normalizable states. In the invariant inner product

∫

d4x du
√
−G(G+−)−jφ+jφ−j =

∫

d4x du e(4−2j)uφ+jφ−j , (3.38)

the plane wave states would be e(j−2)ueiνu, that is, ζ = j − 2 + iν. The dimension (3.37)

is then

∆ = 2 + iν . (3.39)

We have seen that the Pomeron vertex operator gets extended to general j in the analysis

of the Regge limit. Similarly the gauge theory operators can be extended to general j [50]

(they are no longer local). Thus it is natural to think of ∆ as a function of complex

j, or more precisely that the physical state conditions define a curve in the ∆-j plane.
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The operator dimensions (which enter into DGLAP evolution) are given by ∆(j) at j =

2, 3, 4, . . . . The BFKL exponents are given by the inverse function j(∆) at ∆ = 2 + iν,

and in particular j0 = j(2).

Let us now repeat the large-λ calculation of j0 in light of the above discussion. We

have the physical state condition

1 = L0 =
j

2
− 1

4
√

λ
(∆ − 2)2 +

1√
λ

. (3.40)

The first term on the right is the oscillator level. The form of the second term is determined

by inversion symmetry; its coefficient follows by lifting the Virasoro generators (3.13) to

curved space and matching the term −(α′/4R2)∂2
u. The value of the final constant follows

from the solution j = 2,∆ = 4, corresponding to the energy-momentum tensor. Finally,

j0 = 2 − 2/
√

λ is obtained by setting ∆ = 2. This is similar to the discussion in ref. [40].

3.4 Extension to general λ

Thus far we have leaned heavily on semiclassical calculations on the world-sheet. In this

section we would like to set up the framework as much as possible without this assumption.

We might hope in the future to extend our results to higher order in 1/
√

λ, and also to

attempt to make some contact with the strongly coupled world-sheet theories that would

be dual to perturbative gauge theories. In order to have some constraint on the structure

we will focus on the high energy conformal regime.

The calculations thus far indicate the general strategy, factorizing in the t-channel in

terms of a sum over Pomeron vertex operators. We keep only the leading Regge trajectory,

meaning vertex operators constructed from the undifferentiated X3,4 and U fields, and

from ∂w,w̄X±. That is, we are assuming that as λ is varied the dominant Pomeron states

are in one-to-one correspondence with those at large λ; this appears to be consistent with

what is known at small λ, as we note below. At t = 0, a complete set of vertex operators

is of the form

V±j,ν,0 = e(j−2+iν)U (∂X±∂̄X±)j/2. (3.41)

In the previous section we used a semiclassical argument to justify this, but we believe that

it is simply a consequence of symmetry: these are the principal continuous representations

of the conformal group [51]. Similarly for negative t = −k2,

V±j,ν,k ∝ eik·Xe(j−2)UKiν(z0|t|1/2e−U )(∂X±∂̄X±)j/2 ; (3.42)

for positive t the Bessel function becomes Jiν . Again these forms should be completely

determined by conformal symmetry.

The quantum numbers (j, ν, k) commute with L0, L̃0, so

L0Vj,ν,k = L̃0Vj,ν,k = hj,νVj,ν,k , (3.43)

where the weight h is a function of the spin and the SO(2, 2) Casimir; for example, at

strong coupling eq. (3.40) gives hj,ν = 1
2j + 1

4(ν2 + 4)/
√

λ. The coefficient of the unit

operator in the OPE of two such operators is then

Vj,ν,k(w, w̄)Vj′,ν′,k′(0, 0) ∼ cj,ν

(ww̄)hj,ν
(2π)4δ(j + j′)δ(ν + ν ′)δ2(k + k′) . (3.44)
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General principles of CFT (see Chapter 6.7 of [52]) then give the factorization

〈

WRwL0−2w̄L̃0−2WL

〉

=

∫

dj dν

(2π)2
(ww̄)hj,ν−2

cj,ν
〈WRVj,ν,k〉 〈V−j,−ν,−kWL〉 . (3.45)

We are using a non-standard Hilbert space for the ± oscillators, so we must determine the

path of the j-integral. We can think of j as being introduced through a Mellin transforma-

tion with respect to s, and so the j integral is an inverse Mellin transformation. Thus the j

integral runs parallel to the imaginary axis, Re(j) = j∗, and to the right of all singularities.

Now take the integral d2w in a neighborhood of the origin; in order for this to converge

at 0 we first deform the contour to large j∗. Integrating and also boosting back to the

approximate rest frames, we have

T ∼
∫

dj dν

(2π)2
(s/s0)

j

cj,ν(hj,ν − 1)
〈WR0Vj,ν,k〉 〈V−j,−ν,−kWL0〉 . (3.46)

In order to obtain the large-s asymptotics we now deform the contour back toward negative

j∗, picking up the pole in hj,ν − 1 having the largest j; call this j(ν). Then

T ∼
∫

dν

(2π)

(s/s0)
j(ν)Res(ν)

cj(ν),ν

〈

WR0Vj(ν),ν,k

〉 〈

V−j(ν),−ν,−kWL0

〉

. (3.47)

From this formal argument we can anticipate that much of the qualitative physics at

large λ will persist to smaller values of λ. The inversion symmetry of the conformal group,

which takes u → u0 − u for any u0, implies that j(ν) can depend only on ν2. Therefore

ν = 0 is an extremum, presumably a maximum,17 of j(ν). This ensures there is a cut

extending from some value j = j0 at ν = 0 down to smaller values of j. The leading

behavior at large s will always be given by expanding

j(ν) ≈ j0 −Dν2 + order(ν4) . (3.48)

Evaluating the ν integral (3.47) by saddle point again gives, at t = 0, a diffusion kernel

in U . For negative t, the vertex operators (3.42) are damped at small U , generalizing the

result found in the effective quantum mechanics at large λ; there is effectively a repulsive

potential in this region. Meanwhile, the end of the cut, j0, is t-independent for all λ, because

the eigenvalue hj,ν can be obtained at large U , where the vertex operator is asymptotically

independent of t. See our discussion surrounding eq. (2.39).

The DGLAP dimensions and BFKL exponent are still determined by the same vertex

operator, so the relation discussed in the previous section should hold for all λ, consistent

with the weak coupling result. That is, j0 is determined by ∆(j0) = 2. In the large-λ limit

we have studied the ∆-j relation only near j = 2, where it takes the form (3.40).

In the weakly coupled limit the (∆, j) locus has a complicated structure [45]. In the

normal operator analysis one has ∆ = 2+ j + O(g2), i.e. twist two in the free limit. BFKL

identify another branch to the solution, where j = 1 + O(g2). The inversion symmetry

17At weak coupling, ref. [49] gives j(ν) in N = 4 Yang-Mills through three loops.

– 26 –



JH
E

P
1

2
(2

0
0

7
)0

0
5

−1 1 2 3 4 5

0.5

1

1.5

2

2.5

3

∆

λ ≪ 1

λ ≫ 1

j

Figure 2: Schematic form of the ∆ − j relation for λ ≪ 1 and λ ≫ 1. The dashed lines show the

λ = 0 DGLAP branch (slope 1), BFKL branch (slope 0), and inverted DGLAP branch (slope −1).

Note that the curves pass through the points (4,2) and (0,2) where the anomalous dimension must

vanish. This curve is often plotted in terms of ∆ − j instead of ∆, but this obscures the inversion

symmetry ∆ → 4 − ∆.

∆ → 4 − ∆ implies a third branch ∆ = 2 − j + O(g2). It follows that at zero coupling the

Pomeron physical state condition must be

(∆ − 2 − j)(∆ − 2 + j)(j − 1) = 0 (3.49)

in order to capture all three branches of the solution. At one loop we would expect a

correction

(∆ − 2 − j)(∆ − 2 + j)(j − 1) = a(∆, j)g2 . (3.50)

Let us analyze the solution near the point (∆, j) = (3, 1) where the BFKL and DGLAP

lines meet. We assume that a(∆, j) is nonsingular there and approximate it by a constant

a ≡ a(3, 1); we can also approximate ∆ − 2 + j = 2. The intersection of the BFKL and

DGLAP lines is then resolved into a smooth hyperbola, one branch of which is shown in

figure 2.

If we approach this point along the BFKL branch, the physical state condition (3.50)

becomes

j = 1 +
ag2

2(∆ − j − 2)
= 1 +

ag2

2(∆ − 3)
+ O(g4) . (3.51)

If we approach it along the DGLAP branch, then

∆ = 2 + j +
ag2

2(j − 1)
. (3.52)

Thus the physical state condition (3.50) reproduces the known perturbative poles in the

BFKL exponent and anomalous dimensions; the common value a = −N/π2 gives the

correct coefficient in both (3.51) and (3.52). We emphasize that this result, that the
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BFKL calculation determines the j = 1 singularity in the anomalous dimensions, is well-

known [45 – 49]; we are simply giving a different perspective on it.18

For the ρ trajectory [53 – 57] the BFKL exponent goes to 0 at weak coupling, so the

BFKL and DGLAP curves all meet at the point (2, 0) that determines the BFKL expo-

nent. That the weak-coupling BFKL exponent in this case is of order
√

λ, rather than the

perturbative λ, is presumably connected with this fact.

4. Derivation in light-cone gauge

The light-cone has proven to be a natural formalism for studying the high energy limits of

quantum field theories, leading to a vivid physical picture in Feynman’s parton language.

It is interesting to re-interpret our results for the BFKL singularity in this framework.

The light-cone gauge for a superstring [58] in AdS5×W eliminates all spurious degrees

of freedom by fixing the bosonic co-ordinates X+(σ, τ) = (X0 + X1)/
√

2 = τ , P+(σ, τ) =

const, and the first derivatives of X−(σ, τ) = (X0 − X1)/
√

2 as quadratic functions of

the transverse fields via the Virasoro constraints.19 (See refs. [52, 59] for details.) The

remaining physical bosonic degrees of freedom are two transverse co-ordinates X⊥(σ, τ) =

(X2,X3), the radial field Z(σ, τ) in AdS5, (its zero-mode being z = R2/r), and five fields

Θ(σ, τ) in W , plus the center of mass coordinates x− = (x0 − x1)/
√

2 and conjugate

momentum p+ = (p0 + p1)/
√

2. The fermionic sector is treated analogously, but we can

safely ignore it in our present discussion.

We will first discuss how to extract the Regge limit for an elastic open-string scattering

amplitude (p1, p3 → −p2,−p4) in a light-cone setting, before generalizing the analysis to

closed-string scattering. After treating scattering in flat space, we will deal with the case

of warped spacetime.

The elastic scattering amplitude for external states with momentum vectors pM
i =

(p+
i , p−i , p⊥i ), and corresponding vertex operators Vi, can be expressed as a Euclidean

Polyakov path integral in light-cone gauge,

A(s, t) δ2
(

∑

p⊥i
)

=

∫

dT

∫

DX⊥DZ e−
∫

dτ
∫ p+

0 dσ L[X⊥, Z]
4

∏

1

Vi , (4.1)

where we ignore the bosonic modes in W as well as all fermionic modes, since they don’t

contribute to the leading j-plane singularity. Scattering can be shown to take place on a

worldsheet of fixed width given by the total p+ = p+
1 +p+

3 in the s-channel, as illustrated in

figure 3. Open strings obey Neumann boundary condition on the boundaries of the world-

sheet (the horizontal solid line segments in figure 3). The worldsheet has a single modulus

18The full structure is even richer than we have indicated, because the poles that we have found are just

the first of infinite sets, arising from Ψ functions. Thus there are evidently an infinite number of additional

branches to the solution of the physical state condition at ∆ = 2+ j +m, ∆ = 2− j −m, and j = 1−m for

positive integer m; these do not intersect with the branch we are focussing on. There are also additional

contributions from states with nonzero spin in the 2-3 plane. Presumably all these additional contributions

correspond to the exchange of string states with higher oscillators excited.
19It is convenient in this section to use τ to denote worldsheet time. In other sections τ denotes the

Regge diffusion “time”.
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Figure 3: The light-cone worldsheet domain, X+ = τ ∈ [−∞,∞], σ ∈ [0, p+],with p+ = p+

1 + p+

3

for elastic scattering in the brickwall frame.

T specifying the duration of the interaction in worldsheet time τ . (Closed strings obey

periodic boundary conditions and have an additional modulus to enforce level matching.)

4.1 Open string scattering in flat spacetime

The open string tachyon elastic scattering amplitude in flat space has the well-known

Veneziano form,

A(s, t) =

∫ 1

0
dw (1 − w)−2−α′s w−2−α′t ≃ Γ(−1 − α′t)(e−iπα′s)1+α′t , (4.2)

where the integral in the Regge limit is dominated by w = O(1/s). In section 3 this

observation for the closed string led naturally to the use of the OPE for the p1-p2 vertex

operators. The methods of section 3 analogously give

V±
R (k,w) = (∂wX±(w))1+α′te∓ikX(w) and ΠR(α′t) = Γ(−1 − α′t)e−iπ−iπα′t . (4.3)

for the open string Reggeon vertex operator and propagator in flat space.20

We shall explain in this subsection how we can arrive at these results starting from the

flat-space light-cone path integral, given by (4.1) without the Z coordinate. In conformal

gauge, we integrate over the position w of one of the vertex operators. In a light-cone

approach, all external vertices are fixed, while the modulus T is integrated over. The

conformal Christoffel transformation [59] which maps the upper half complex w-plane into

the light-cone worldstrip in figure 3, takes the region w = O(1/s) that dominates the

integral in the Regge limit into the regime T = O(1/p+). This difference notwithstanding,

we will see that we can still identify factors in the light-cone derivation closely related to

V±
R (k,w) and ΠR(α′t) above.

4.1.1 Brief discussion for light-cone gauge at high energies

Since the density of P+(σ) is conserved in the light-cone gauge, it is traditional, for scat-

tering processes, to label each string segment (or string bit) ∆σ by equal quanta ∆p+, and

20We also note in passing that using the vertex operator (4.3) considerably reduces the labor of earlier

methods used in extracting the asymptotic multi-Regge behavior for general n-point functions [60 – 62].
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Figure 4: The light-cone worldsheet domain splits into two parallel sheets which join only at the

dashed line at τ ∈ [0, T ] and σ = σint. Solid (dashed) lines have Neumann (Dirichlet) boundary

conditions respectively.

to choose the string length21 to be ls = p+. Since this gauge is not manifestly Lorentz

invariant, it is helpful to pick a convenient frame. We have chosen the brickwall frame

in the center of momentum, where the transverse momenta are reflected by the collision:

p⊥r = ±k⊥/2. In this frame22 the two strings joining at (σ, τ) = (σint, 0), split at (σint, T )

with exactly the same value of σ or string bit, as illustrated in figure 4.

A major simplification of this frame is the fact that the t-channel worldsheet diagram

(T < 0) vanishes identically, leaving only the s-channel contribution (T ≥ 0). In this case

the path integral can be evaluated by first cutting the worldsheet along the horizontal

dashed line in figure 4 at fixed σ = σint, so that it forms two independent strips of fixed

width p+
1 = −p+

2 and p+
3 = −p+

4 respectively. The two independent strings must then be

rejoined along the dashed line by imposing there a Dirichlet boundary condition, with a

delta-functional constraint,

∫

Dk⊥(τ) exp[i

∫ T

0
dτ k⊥(τ)(X3−4

⊥ (σint, τ) − X1−2
⊥ (σint, τ))] . (4.4)

Effectively what we have done is insert a non-local vertex operator

exp[−i

∫ T

0
dτ k⊥(τ)X1−2

⊥ (σint, τ)] (4.5)

on the σ = σint boundary of the 1-2 string, and a corresponding vertex on the boundary of

the 3-4 string. The path integrals over the worldsheets of the 1-2 and 3-4 strings can now

be performed separately, followed by the integral over
∫

dT
∫

Dk⊥(τ).

The Regge limit represents a collinear boost into what is sometimes referred to as an

infinite momentum frame, in which the boosted 3-4 string grows in length (p+
3 = −p+

4 ∼
O(

√
s)) and the 1-2 string decreases in length (p+

1 = −p+
2 = O(1/

√
s)). Therefore, in the

21We have set the world sheet speed of propagation to be c = 1/(2πα′). More generally, c =

ls/(2πα′p+) [52].
22To be precise, we define the brickwall frame with transverse momenta p⊥

1 = p⊥
2 = k⊥/2, and ra-

pidities exp[±yi] =
√

2p±

i /
p

(M2
i + k2

⊥
/4), so that the invariants are t = −k2

⊥ and s = M2
1 + M2

3 +
p

M2
1 + k2

⊥
/4

p

M2
3 + k2

⊥
/4 cosh(y1 − y3). Boosting to the center of longitudinal momentum frame sets

y1 = −y3.
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Regge limit, it is convenient to refer to these as the “long” and “short” strings respectively.

They propagate in τ independently, except in the interaction region. As a consequence, the

non-trivial physics involves a very small area of the worldsheet, ∆τ = T ∼ 1/p+
3 ∼ 1/

√
s

and ∆σ ∼ p+
1 ∼ 1/

√
s, so one should be able to associate the Regge mechanism with a

“local” conformal worldsheet transformation near the interaction region. The sole impact

of this brief interaction is to constrain the ends of the long and short strings to coincide.

As we shall show below, the Regge behavior comes entirely from the growth of the long

string with the total center-of-mass energy
√

s.

Before proceeding to this analysis, it is useful to first fix the normalization for the

amplitude. We do this by considering the Regge limit of the scattering amplitude at t = 0,

i.e., for p⊥r ≡ 0. In this limit, the path integral in (4.1) can be carried out (recall we are

not including a warped coordinate Z at this point), and the forward amplitude reduces to

a single integral over T [63]

A(s, 0) ≃
∫

dT

T 2
2α′p+ep−T = −α′s

∫ ∞

ǫ

dζ

ζ2
e−ζ ≃ −α′s

ǫ
, (4.6)

with ζ = −p−T . The divergence at T = 0 corresponds to the pole in the propagator,

ΠR(α′t), in eq. (4.3) from “photon” exchange at t = −k2
⊥ = 0. The divergence at T = ∞

is due to s-channel poles; we evaluate the integral by analytic continuation to Re p− < 0.

This is consistent with our expectation that the leading Regge singularity is dominated by

contributions from the small T region. For later reference we define the measure dµ(T ) =

[2α′p+ exp(p−T )/T 2]dT .

4.1.2 Regge behavior

In flat space, the light-cone Lagrangian density is

L =
1

2
(∂τX⊥)2 +

1

2

1

(2πα′)2
(∂σX⊥)2 . (4.7)

The light-cone Hamiltonian H = p− is the generator of translations in x+. The Virasoro

constraints set −∂τX
− equal to the Lagrangian: L = −∂τX

−. (In what follows, we shall

use the notation Ẋ⊥ ≡ ∂τX⊥ and X ′
⊥ ≡ ∂σX⊥.) Next we introduce the vertex functions

for ground state tachyons on the vertical boundaries Br in figure 4,

Vr[pr,X] = exp

[

(1/p+
r )

∫

Br

dσ[ip⊥r X⊥(σ, τr) + p−r X+(σ, τr)]

]

, (4.8)

with center of mass coordinates: τr = (1/p+
r )

∫

Br
dσX+ and x

(r)
⊥ = (1/p+

r )
∫

Br
dσX⊥. The

limits τr → ∓∞ for in/out states put the scattering amplitude on shell.

We will compute the worldsheet path integral by first evaluating it in six rectangular

blocks, holding the worldsheet fields on the boundaries of the blocks fixed, and then finally

integrating over the boundary data of the blocks. The six rectangular regions, shown in

figure 5, are formed by cutting the worldsheet at σ = σint into the 1-2 and 3-4 strips

described above, and then dividing each strip into three regions: incoming (τ < 0), in-

teracting (τ ∈ [0, T ]), and outgoing (τ > T ) segments. In figure 5, these six regions are
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Figure 5: The six rectangular regions for evaluating the elastic scattering path integral in the

brickwall frame.

labeled by the contributions Φ(r) to the path integral from the four external states, and the

Green’s functions G(1,2) and G(3,4) for the interactions regions. On the vertical boundary

of each region marked Φ(r), r = 1, 2, 3, 4, we hold the transverse fields fixed to X
(r)
⊥ (σ):

X⊥(σ, 0) = X
(1)
⊥ (σ − σint)θ(σ − σint) + X

(3)
⊥ (σ)θ(σint − σ)

X⊥(σ, T ) = X
(2)
⊥ (σ − σint)θ(σ − σint) + X

(4)
⊥ (σ)θ(σint − σ) (4.9)

Note that σint = p+
3 . This leads to an exactly factorized representation for the amplitude,

A(s, t)δ2(p⊥1 + p⊥2 + p⊥3 + p⊥4 ) ≃
∫

dµ(T )

∫

Dk⊥(τ) V12[k
⊥(τ)] V34[−k⊥(τ)] . (4.10)

Each Vrs is given by a one-dimensional path integral over the boundary fields X
(r)
⊥ (σ),

Vrs[k
⊥(τ)] =

∫

DX
(r)
⊥

∫

DX
(s)
⊥ Φ(r)[X

(r)
⊥ ] G(r,s)[X

(r)
⊥ ,X

(s)
⊥ , k⊥(τ)] Φ(r)[X

(s)
⊥ ] , (4.11)

where Φr and G(r,s) are the results of the two-dimensional path integrals over the corre-

sponding regions, with fixed boundary values given by X
(r)
⊥ (σ), with 0 ≤ σ ≤ |p+

r |. Both

the incoming and the outgoing regions involve free string propagation, so the Φ(r) are just

the usual Gaussian wave functions for propagating tachyon boundary states,

Φr[X
(r)
⊥ ] = exp[ip⊥r x

(r)
⊥ − 1

2

∞
∑

n=1

ω(r)
n X(r)

n X(r)
n ] . (4.12)

We have used a standard normal mode expansion for each boundary field,

X
(r)
⊥ (σ) = x

(r)
⊥ +

√

2

p+
r

∞
∑

n=1

X(r)
n cos(ω(r)

n σ/c) . (4.13)

With our choice of Euclidean worldsheet parameters, the frequencies of the modes, ω
(r)
n =

n/(2α′|p+
r |), are scaled by 1/|p+

r | on each string.

G(1,2) and G(3,4) can be obtained explicitly by a variety of methods [64]. They obey

mixed boundary conditions: Dirichlet boundary conditions on the vertical (dashed lines at
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fixed τ), Neumann boundary condition at the free end (solid line at fixed σ) and a fixed

Fourier distribution in k⊥(τ) for the interaction between the strings (dashed line at σint as

described above). At this point our treatment is still general. However we now choose to

evaluate them approximately in the Regge limit, by making a semi-classical approximation

which is more easily generalizable to our subsequent warped background.

In the Regge limit, one string is much shorter than the other, and the interaction time

T goes to zero. In analogy with the OPE expansion, we consider an expansion in T . At

T = 0, we can identify the boundary values of the worldsheet fields at τ = 0 and τ = T . It

is therefore useful to distinguish between the differences, [X
(1)
⊥ (σ)−X

(2)
⊥ (σ)] and [X

(3)
⊥ (σ)−

X
(4)
⊥ (σ)], that are being set to zero and the averages, X

(12)
⊥ (σ) = [X

(1)
⊥ (σ)+X

(2)
⊥ (σ)]/2 and

X
(34)
⊥ (σ) = [X

(3)
⊥ (σ) + X

(4)
⊥ (σ)]/2. Now the delta-functionals in eq. (4.4) become ordinary

delta-functions

(2π)2δ2(X
(12)
⊥ (0) − X

(34)
⊥ (p+

3 )) =

∫

d2k⊥ e−ik⊥X
(12)
⊥ (0) eik

⊥X
(34)
⊥ (p+

3 ) , (4.14)

for the average coordinates: The only quantity we need to evaluate to first order in T is

the action, ∆S = ∆S12 + ∆S34, in the τ ∈ [0, T ] region,

∆S12[X
(12)
⊥ ] ≃ T

∫ p+
1

0
dσ L and ∆S34[X

(34)
⊥ ] ≃ T

∫ p+
3

0
dσ L . (4.15)

Consequently G(1,2) can be approximated by

G(1,2)[X
(1)
⊥ ,X

(2)
⊥ , k⊥] ∼ δ[X

(1)
⊥ (σ) − X

(2)
⊥ (σ)] exp

[

−ik⊥X
(12)
⊥ (0) − ∆S12[X

(12)
⊥ ]

]

, (4.16)

and similarly for G(3,4). The remaining path integral over X
(12)
⊥ and X

(34)
⊥ can be carried

out in terms of sums over their respective normal modes.

Let us first examine the interaction region for the short string. Since the excitation

frequencies in the wave functions Φ(1) and Φ(2) grow with s, (ωn = n/2α′p+
1 ∼ n

√
s),

the short string interacts like a rigid point-like object, and its center of mass effectively

coincides with the interaction point, x
(1)
⊥ = x

(2)
⊥ ≃ X

(1)
⊥ (0) = X

(2)
⊥ (0). The action for the

short string during the interaction time, ∆S12, provides a UV cutoff in the mode sum,

leading to an approximate local point-like short string vertex,

V12(k
⊥) ∼

∫

d2x
(1)
⊥

(2π)2
eix

(1)
⊥

(p⊥1 +p⊥2 −k⊥) = δ2(p⊥1 + p⊥2 − k⊥) . (4.17)

On the other hand, in the interaction region for the long string, the situation is reversed,

with frequencies in the wave functions Φ(3) and Φ(4) becoming smaller at high energy (ωn =

n/2α′p+
3 ∼ n/

√
s). When s is increased, higher modes become increasingly important, and

the long string also becomes extended in the transverse space, x⊥. As we shall see, without

an effective cutoff in the mode sum, the transverse size of the string would be logarithmic

divergent. The interaction to first order in T can be written explicitly as

∆S34 =
T

2

∫ p+
3

0
dσ[Ẋ2

⊥ +
1

(2πα′)2
X ′

⊥
2
] = −T

∫ p+
3

0
dσẊ−(σ, 0) , (4.18)
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Figure 6: At the interaction the impact parameter is given by ~b = ~b3 −~b1 where ~bi is the vector

from the center of mass of each string to its end point. In AdS space the strings are separated by

an additional transverse co-ordinate u = u1 − u3 = ln(z3/z1) in the radial direction.

using the Virasoro constraints to express in terms of Ẋ−(σ, 0). Inclusion of this interaction

term will be shown next to render V34 a finite function of k⊥, T and p⊥3 , and will also

directly lead us to the desired Regge behavior.

Assembling all the factors, one is led to a long string form factor,

F34(−k⊥, s) ≡ F34 ≡
∫

dµ(T )V34(−k⊥) (4.19)

≃
∫

dµ(T )

∫

DX⊥Φ3(X⊥)Φ4(X⊥) eT
∫ p+

3
0 dσẊ−(σ, 0) eik

⊥X⊥(p+
3 , 0) .

This can be evaluated directly by expanding in normal modes, so that

F34 ≃ δ2(p⊥3 + p⊥4 + k⊥) (2α′p+)

∫

dT T−2ep−T exp

[

−
∑

n

α′k2
⊥

n + n2T/2α′p+
3

]

. (4.20)

The sum in the exponent, at large p+
3 ≃ p+ ≃ s/2p−, leads to a logarithmic growth,

F34 ≃ δ2(p⊥3 + p⊥4 + k⊥) (−α′s)
∫

dζ ζ−2e−ζ exp[−α′k2
⊥ log(−α′s/ζ) + O(1/s)]

≃ δ2(p⊥3 + p⊥4 + k⊥) (−α′s) Γ(−1 + α′k2
⊥) exp[−α′k2

⊥ log(−α′s)] . (4.21)

Finally combining the vertices for both short and long strings and performing the k⊥

integral gives the final result,

A(s, t) ≃ Γ(−1 − α′t) (e−iπα′s)1 + α′t . (4.22)

4.1.3 Diffusion in transverse space

Looking back at this derivation, we can see that Regge behavior is caused, in the infinite-

longitudinal-momentum transverse-brickwall frame, by the logarithmic growth in s of the
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average fluctuation of the end of the “long” string, X
(3)
⊥ (p+

3 ), relative to its center of mass,

x
(3)
⊥ .

It is instructive to examine further the physics of the interaction region (τ ≃ 0) from the

perspective of the transverse space. The size of an incoming string can be characterized

by the separation between its center of mass and its end point where it interacts with

the other strings: ~b1 = X
(1)
⊥ (0) − x

(1)
⊥ and ~b3 = X

(3)
⊥ (p+

3 ) − x
(3)
⊥ . With the constraint

X
(1)
⊥ (0) = X

(3)
⊥ (p+

3 ) at the interaction, the conventional impact parameter is given by

~b ≡ x
(1)
⊥ − x

(3)
⊥ = ~b3 −~b1 , (4.23)

as illustrated in figure 6. We could have chosen, in our light-cone analysis, to represent the

scattering amplitude (4.10) in impact-parameter space, Fourier transforming from k⊥ to

x⊥. After integrating the fluctuations, we would find the “kernel”, K(y;x
(1)
⊥ , x

(3)
⊥ ), as the

Fourier transform of the s-dependent factor in eq. (4.22). The kernel satisfies a diffusion

equation,

[ ∂y − 1 − α′∂2

x
(1)
⊥

] K(y;x
(1)
⊥ , x

(3)
⊥ ) = δ(x

(1)
⊥ − x

(3)
⊥ ) δ(y) , (4.24)

where the evolution parameter is the rapidity, y ∼ log(α′s). Since one works only with

physical degrees of freedom, the light-cone path integral has the advantage that we can

follow the evolution of the physical transverse motion of the string “bits”, directly leading

to a diffusion picture at high energies.

In flat space, the diffusive growth in impact parameter is equivalent to the “Regge

shrinkage” for the Regge “form factor”, exp[α′t log(α′s)]. The amplitude decreases more

rapidly in |t| at large values of the energy. Historically, Regge behavior was first exhibited

in a relativistic setting by summing “ladder graphs”, or more generally, “multiperipheral

ladders” [65]. A crossing symmetric generalization led to the consideration of “fishnet dia-

grams” [66, 67], which played an influential role in the construction of early string theories.

Here, we have reversed the argument, and have shown how a string-string interaction in

the Regge limit reproduces the underlying diffusion phenomenon. This picture will be

generalized in the next subsection to treat the case of warped spacetime.

Our computation is related in an interesting way to that of ref. [68]. Suppose we

introduce a local conserved vector current coupled to charges at the end of a single open

string. As emphasized in ref. [68], in light-cone gauge such a form factor would (naively) be

obtained by introducing a local vertex Ẋµ(σ, τ) exp[ik⊥X⊥(σ, τ)] at (σ, τ) = (p+, 0) onto

a straight worldsheet of width p+ and infinite length. The calculation is very similar to

our Regge computation for the long string, but with T strictly taken to zero, which results

in a logarithmic divergence, 〈∆X2
⊥〉 ∼ ∑

n 1/n, in the transverse size ∆X⊥ = X⊥ − x⊥.

This is the well-known disease for local currents in flat space [68]. In contrast, the Regge

“form factor” F34 of the long string, eqs. (4.20)–(4.20), has its divergence cut off by the

interaction operator, exp[T
∫

dσẊ−], that we obtained working to first order in T .

If we compare our light-cone Regge form factor F34 in eq. (4.20), with the product of

the conformal Regge vertex and its propagator in eq. (4.3),

ΠR(α′t)V±
R (k,w) =

∫ ∞

0
dζ ζ−2−α′teζ∂wX±(w)e∓ikX(w) , (4.25)
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we note that they are clearly not the same. However we have checked by direct calculation

that the light-cone-gauge-fixed version of the conformal Reggeon vertex,

V±(lc)
R (k,w) = [∂wX±(w)]1+α′te∓ik⊥X⊥(w) , (4.26)

also reproduces the scattering amplitude in the Regge limit using the Virasoro constraints.

A derivation of this form of the Regge vertex from the light-cone path integral would be

nice.

4.2 Regge behavior in warped spacetime

Now we consider the effect of adding a warped transverse direction, the AdS radial direction,

Z. The light-cone action in an AdS space of curvature radius R is [58]

∫ p+

0
dσL =

1

2

∫ p+

0
dσ

[

Ẋ2
⊥ + Ż2 +

1

(2πα′R−2Z2)2
(X ′

⊥
2
+ Z ′2)

]

, (4.27)

=
1

2

∫ p+

0
dσ

[

Ẋ2
⊥ + R2e−2U U̇2 +

1

(2πα′)2
(e4UX ′

⊥
2
+ R2e2UU ′2)

]

,

where have introduced U(σ, τ) = − log(Z(σ, τ)/R). In the light-cone frame the conformal

group O(4, 2) is restricted to the subgroup SL(2, C): Z → λZ,X⊥ → λX⊥, τ → λτ, σ →
σ/λ, which is the isometry of Euclidean AdS3 for the three transverse coordinates, (x⊥, z).

To exploit this invariance, we work with the U variable and make a semi-classical expan-

sion around the zero modes, U = u and X⊥ = x⊥ . The essential new feature is an

effective string slope, α′
eff(u) = α′e−2u, which leads to local dependence on u. The dressed

wavefunctions to Gaussian order become

Φr[X,U ] = exp
[

ip⊥r x
(r)
⊥ − 1

2

∑

n ω
(r)
n [e2uX

(r)
n X

(r)
n + R2U

(r)
n U

(r)
n ]

]

ψr(ur) , (4.28)

to be compared with eq. (4.12).

The calculation proceeds along the same line as that for the flat background, with

the addition of the one extra transverse coordinate u (see figure 6). Factorization of the

Dirichlet constraint on U in the interaction region requires that eq. (4.14) be supplemented

with an additional delta-function,

δ
(

U
(1)
⊥ (0) − U

(3)
⊥ (p+

3 )
)

=

∫

dν

2π
exp

{

−iν[U (1)(0) − U (3)(p+
3 )]

}

. (4.29)

Again diffusion takes place only for the “long” boosted string, and we must keep the

interaction ∆S34 to first order in T . The details are similar to the flat space derivation,

except that α′k2
⊥ is replaced by α′

eff(u)k2
⊥ + ν2, in the new version of eq. (4.20). For

k2
⊥ = 0, due to conformal invariance, the ν2 term corresponds to flat space diffusion in the

u-direction. For non-zero k2
⊥ 6= 0, we must replace ν by an operator i∂u conjugate to u

and take care with operator ordering.

In fact to deal rigorously with the operator ordering problem, one must go beyond

the Gaussian approximation to one loop order [69] for the worldsheet sigma model. The

result of this calculation would be to introduce a shift ν2 → ν2 + 2iν, identical to that in
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the computation of the anomalous dimension of the on-shell photon vertex operator [36].

We choose an alternative approach, fixing this ambiguity by matching the Regge spectrum

with the on-mass-shell wave equation (L0 = 1 at j = 1) for the vector field in AdS space.

Either way this results in the following Hermitian differential equation,

[∂y −1−α′
0 e−2u∂2

x⊥
− 1√

λ
(∂2

u−1)] KV (y;x⊥, u, x′
⊥, u′) = δ(x⊥−x′

⊥)δ(u−u′)δ(y) , (4.30)

which determines the leading j-plane singularity to leading order in α′
0. In momentum

space, this is equivalent to a Euclidean Schrödinger equation for the open string Reggeon

kernel,

[∂y − 1 − α′
0 t e−2u − 1√

λ
(∂2

u − 1)] KV (y; t, u, u′) = δ(u − u′)δ(y) . (4.31)

Since large u suppresses the corresponding diffusion in x⊥, diffusion in u gives rise to

the BFKL cut. This will be made more precise in the next section where we explore

this quantum mechanical analogy. This effect could have been anticipated qualitatively in

terms of the boosted incoming wave function (4.28). The Un modes enter like ordinary

transverse modes in flat space. The hadrons are peaked at small u, but as p+ increases,

diffusion in u pushes the incoming hadron wave function into the large u (UV) region. This

then acts to increase the effective energies (ωne2u) of the X⊥
n modes, suppressing diffusion

in x⊥. It is interesting to compare this with the physics in flat space, where increasing p+

reduces effective energies (ωn ∼ n/p+) for the modes of all transverse directions; this effect

is responsible for the Regge shrinkage of the small-angle scattering peak. Eq. (4.31) leads

to a BFKL-like cut for the open string Regge exchange [53 – 57] starting at j = 1 − 1/
√

λ.

To generalize this to the closed string, one must introduce periodic boundary condition

on the strings and an additional modulus θ that rotates the Riemann surface around a cut

on the s-channel intermediate closed string. The integral over θ forces level matching be-

tween holomorphic and anti-holomorphic modes. This has the effect of replacing α′
0 → 1

2α′
0.

Again, to get the full contribution to leading order in strong coupling, we should do a one

loop correction to the Gaussian approximation, this time resulting in the anomalous shift

ν2 → ν2+4iν, for the graviton vertex, consistent with the on-shell linearized graviton equa-

tion and general covariance in the AdS5 background. The final result, when transformed

back to a momentum representation, is

[∂y − 2 − α′
0

2
t e−2u − 1

2
√

λ
(∂2

u − 4)] K(y; t, u, u′) = δ(u − u′)δ(y) . (4.32)

As noted before, the spectral decomposition for this Schrödinger operator, eq. (2.36), gives

the leading BFKL singularity at j = 2 − 2/
√

λ in strong coupling. It is also interesting to

note that the same anomalous shift ν2 → ν2 + 4iν for the graviton vertex was found in

ref. [68] to be essential in giving a finite form factor at non-zero k2
⊥. The BFKL singularity,

power behavior at wide angles [25, 26] and finite power-behaved form factors all have a

common origin, at least in strongly coupled ultraviolet-conformal theories.
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5. Regge trajectories in UV-conformal theories

Our previous computations of the kernel were done in conformally-invariant theories, or

in kinematic regimes where confinement played no role. We now consider the effects of

confinement, while keeping the ultraviolet strictly conformal. A simple example of such

a theory is the N = 1∗ model studied in [70]. This discussion is by necessity less precise

than the previous ones, simply because there is model-dependence in the confining region.

Our goal in this section is to make as many model-independent remarks as possible, and

examine where model-dependence is to be found.

If confinement sets in at a scale Λ in the gauge theory, this leads to a change in the

metric away from AdS5×W in the region near z = R2/r ∼ 1/Λ ≡ z0. Typically [12, 70, 71]

the space is cut off, or rounded off, in some natural way at z = z0, or equivalently u = u0.

This leads to a theory with a discrete hadron spectrum, with mass splittings of order Λ

among hadrons of spin ≤ 2. The theory will also have confining flux tubes (assuming

these are stable) with tension 1/α′
0 = 2

√
λΛ2; the same scale sets the slope of the Regge

trajectories for the high-spin hadrons of the theory. Note the separation of the two energy

scales, by a factor of λ1/4; this is an important feature of the large-λ regime.

Since the metric is changed near u0, the form of the differential operator ∆j ≈ ∆2,

defined in (2.21), is likewise changed in this region. The effective potential V (u) for the

Schrödinger problem assocated to the kernel approaches eq. (2.37) only for u ≫ u0. How-

ever, for −t ≫ Λ2, the exponentially rising potential for u ≪ ln(
√

|t|Λ) implies the kernel

is insensitive to the region near u0. This is consistent with the expectation in the QCD

literature that the BFKL calculation is infrared-safe for large negative t, while the ef-

fects of confinement become important as t → 0−, and for any t > 0. The regime where

confinement-independent results are obtained will be discussed further below.

5.1 The hard-wall model

To begin this discussion, it is instructive to work our way through the “hard-wall” toy

model. While this model is not a fully consistent theory, it does capture key features of

confining theories with string theoretic dual descriptions.

In the simplest form of the hard-wall model, the metric takes an AdS5 ×W form (2.1)

for u > u0 and has a sharp boundary at u = u0; without loss of generality we take

u = − ln z/z0 and thus u0 = 0. This metric does not satisfy the supergravity equations,

but experience has shown [25, 30, 72] that it captures much of the phenomenology encoded

in the metrics of consistent four-dimensional theories with confining dynamics [70, 71].

In particular, phenomena for which the details of the metric in the confining region are

not important — potentially universal features of gauge theory — are often visible in this

model. One can identify infrared-insensitive quantities and general features of the hadronic

spectrum, hadronic couplings, etc, including, as we will see, aspects of Regge trajectories

and of the Pomeron. Meanwhile, model-dependent aspects of these and other phenomena

also can be recognized, through their sensitivity to small changes in the model.

The main advantage of the hard-wall model is that it can be treated analytically, and

the kernel can be written explicitly. Since the metric is still AdS5 × W , we have the
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u

t > 0

t = 0

V (u)

0

4

t < 0

Figure 7: The potential for the effective Schrödinger problem in the hard-wall model, for t = 0

(solid), t > 0 (short dash), and t < 0 (long dash).

same quantum mechanics problem to solve as in the conformal case, with potential V (u)

given in eq. (2.37), except for a cutoff on the space at u = 0. The boundary condition at

the wall on the five-dimensional graviton (and its trajectory for general j) is constrained

by energy-momentum conservation in the gauge theory. We must impose the boundary

condition ∂r(r
−2φ+j ) = 0 at r = r0 for the analogue quantum mechanics system. The logic

is the same as in deriving the wave equation (2.22): the pure gauge solution h++ = r2/R2

must be retained, else conservation of the energy-momentum tensor will be violated. This

condition extends to the Pomeron for small |j−2|, which will be the regime we will mainly

consider below.

5.1.1 Scattering of hadrons for t < 0.

For t ≤ 0, the potential (2.37) has an exponential growth at small u and goes to a constant

at large u. Consequently, the spectrum of ∆j is continous. The kernel can readily be

expressed in terms of a set of delta-function-normalized eigenfunctions,

K0(u, u′, τ, t) =

∫ ∞

0
dν|c(ν, t)|2{Iiν(ξ) + R(ν, t)I−iν(ξ)}∗{Iiν(ξ′) + R(ν, t)I−iν(ξ

′)}e−τν2

(5.1)

where Iν(ξ) is the modified Bessel function, τ ∼ ln s/2
√

λ is defined in eq. (2.29), ξ =

z
√−t = (

√−t/Λ)e−u, and R(ν, t) is fixed by the boundary condition at u = 0:

R(ν, t) = − ∂ξ[ξ
2Iiν(ξ)]

∂ξ[ξ2I−iν(ξ)]

∣

∣

∣

∣

∣

ξ=(
√
−t/Λ)

. (5.2)

The parameter ν is related to the energy eigenvalue by E = 4 + ν2. The coefficients

|c(ν, t)|2 =
ν

2 sinhπν
(5.3)

are normalization constants chosen so that K0(u, u′, 0, t) = δ(u− u′); because of conformal

invariance at large u, u′, the coefficients are actually t-independent.
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Since each Bessel function approaches a plane wave at ξ ≃ 0, R(ν, t) is proportional to

the reflection coefficient for a plane-wave incident from u = +∞. It will later be useful to

introduce a one-dimensional unitary S-matrix,

S(ν, t) ≡ e2iδ(ν,t) =

[

Γ(1 + iν)

Γ(1 − iν)

( −t

4Λ2

)−iν
]

R(ν, t) . (5.4)

Let us first validate our expectations regarding scattering of hadronic states. At large

−t ≫ Λ2, the scattering should be model-independent, since the large momentum transfer

shields the scattering from the confinement region, as shown in figure 2.37. Thus for large

−t and large u, u′, the kernel should be almost identical to the kernel (2.39) of a conformal

theory. This can straightforwardly be verified by comparing (2.39) to (5.1), with the use

of (5.2) and (5.3).

As t → 0−, however, the effects of confinement become important. This can most

easily be seen in the t = 0 kernel. At t = 0, the Bessel function Iiν in (5.1) reduces to a

plane-wave and the kernel becomes

K0(u, u′, τ, t) =

∫ ∞

−∞

dν

4π
{e−iνu + S(ν, 0)eiνu}∗{e−iνu′

+ S(ν, 0)eiνu′}e−τν2
(5.5)

with

S(ν, 0) =
ν − 2i

ν + 2i
(5.6)

The integral can be performed, giving

K0(u, u′, τ, t = 0) =
e−(u−u′)2/4τ

2
√

πτ
+ F (u, u′, τ)

e−(u+u′)2/4τ

2
√

πτ
, (5.7)

where

F (u, u′, τ) = 1 − 4
√

πτeη2
erfc(η) , η = (u + u′ + 4τ)/

√
4τ . (5.8)

Note F = 1 for τ → 0 and F = −1 as τ → ∞, with cross-over at τ ∼ u+u′ (for sufficiently

large u, u′).
The formula (5.7) is easy to interpret. The first term is the model-independent ker-

nel (2.35) which describes diffusion from u′ to u; the second term, which involves diffusion

of the image charge at −u′, is sensitive to the reflection off the wall at u = 0 and is thus

model-dependent. Whether a given physical process is model-dependent is determined

by the relative importance of these two terms. For instance, the scattering of two delta-

function disturbances localized at u1 ≫ u2 ≫ 0 will be model-independent until ln s is

large enough to permit diffusion from −u2 to u1, and even then the second term will be

small compared to the first until still larger values of ln s.

However, while hadrons of size ρ typically peak at u ∼ − ln ρΛ, they also have power

law tails extending out to large u, of the form r−∆ ∼ e−∆u, where ∆ (for a scalar hadron)

is the dimension of the lowest dimension interpolating operator for the hadron. (More

generally it is the lowest-twist operator which determines the power.) Consequently, the

scattering at t = 0 of a small hadron, or off-shell photon, of size ρ1 ≪ Λ−1 (with a wave

function extending down to u1 ∼ − ln ρ1Λ) off of an ordinary hadron of size ρ2 ∼ Λ−1
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(with a wave function peaking near the wall but sporting an e−∆u tail) has several regimes.

Diffusion is unimportant for small ln s, model-independent but ∆-dependent for moderate

ln s, and model-dependent for ln s large compared to
√

λu2
1. These issues are addressed in

the final calculations of [30] and will be revisited elsewhere.

5.1.2 Regge trajectories at t > 0

The hard-wall model has a spectrum of hadrons typical of a confining theory, including spin-

two glueballs and their associated Regge trajectories. The spin-two glueballs are simply

the discrete spectrum of “cavity modes” of the Laplacian for a five-dimensional spin-two

field. This Laplacian is the operator ∆2, slightly reinterpreted, as we now discuss.

We have already explained that we may view the operator ∆j as an effective

Schrödinger operator −∂2
u +V (u), with V (u) given in (2.37) (and shown in figure 2.37) and

with energy eigenvalues E that are related to the corresponding spin j by

E = −2
√

λ(j − 2) , (5.9)

as we explained preceding eq. (2.32). For sufficiently positive t this operator has a discrete

set of normalizable “bound-state” modes with eigenvalues E = En < 4. The bound state

eigenvalues En(t), n = 1, 2, . . . , determine the Regge trajectories, where each trajectory

has jn(t) = 2 − En(t)/2
√

λ. The theory has a physical spin-two glueball state of mass

m for each t = m2 such that En(t) = 0 for some n [9 – 11, 73, 74]. (Note V (u) goes

to a positive constant as u → ∞, so En(t) = 0 can only occur for t > 0.) Higher spin

hadrons on the trajectories lie outside the supergravity regime.23 Meanwhile, since V (u)

goes asymptotically to 4 at large u, the spectrum of ∆j also has a continuum that extends

over E ≥ 4 (j ≤ j0); this is the same continuum as was present for t < 0.

The bound states of the hard-wall model’s auxiliary quantum mechanics have wave

functions, in terms of χ = z
√

t =
√

te−u/Λ = iξ, proportional to

J√
4−E (χ) (5.10)

for those discrete values of E where ∂χ[χ2J√
4−E(χ)] vanishes at the wall (χ =

√
t/Λ).

These values of E correspond precisely to poles of the one-dimensional S-matrix, eq. (5.4),

continued to t > 0:

S(ν, t) ≡ e2iδ(ν,t) → −
[

Γ(1 + iν)

Γ(1 − iν)

(

t

4Λ2

)−iν
]

(χ2Jiν(χ))′

(χ2J−iν(χ))′

∣

∣

∣

∣

∣

χ=(
√

t/Λ)

(5.11)

when ν lies on the positive imaginary axis. The glueball states, found when En(t) = 0, have

masses mn proportional to the zeroes of 4J2(x)−xJ3(x); for n ≫ 1 they are approximately

equally spaced, and by an amount ∆m ∼ πΛ. The equal spacing in mass for large n is

required by the WKB approximation applied to the potential eq. (2.37).

The continuum states for E > 4 can be read off from (5.1), with Iiν(ξ) replaced by

Jiν(χ), χ = (
√

t/Λ)e−u. They take the form

Ji
√

E−4 (χ) + R
(√

E − 4, t
)

J−i
√

E−4 (χ) (5.12)

23For a review, see [75].
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Figure 8: The analytic behavior of Regge trajectories in the hard-wall model, showing the location

of the bound-state poles at j = 2 and the t-independent continuum cut (shaded) at j = j0 =

2 − 2/
√

λ into which the Regge trajectories disappear. The lowest Regge trajectory intersects the

cut at a small positive value of t. At sufficiently large t each trajectory attains a fixed slope,

corresponding to the tension of the model’s confining flux tubes.

where the function R is given in eq. (5.2).

We have plotted the spectrum as a function of j−2 [linearly related to −E by eq. (5.9)]

in figure 8. The massive tensor glueball states, marked with dots, are at j − 2 = 0. The

familiar graph of approximately linear Regge trajectories is supplemented by the continuum

of states (the BFKL-like cut) that begins at j = j0 = 2 − 2/
√

λ. The unequal and

nonconstant slopes of the trajectories near j = 2, like the equally-spaced hadron masses

mn, are a model-independent feature of the supergravity limit λ ≫ 1 for j ≈ 2. As j

increases the slopes gradually become parallel and equal to α′
0 = (2

√
λΛ2)−1, which is the

reciprocal of 2π times the confining string tension. The transition to linear trajectories

can be understood as follows. As t increases, the effective potential 4−Λ−2te−2u becomes

deeper, and the states become more localized near the minimum at u = 0. The energy is

then approximately E ≈ −Λ−2t, that is, j ≈ t/2Λ2
√

λ, giving the linear slope. For a given

trajectory jn(t), the WKB approximation shows that it reaches its asymptotic slope for

(j − 2) ≫ n2/
√

λ.

The condition that the state be localized near the minimum, δu ≪ 1, is consistent with

the supergravity approximation, which requires that Rδu ≫
√

α′ or δu ≫ λ−1/4. Thus the

transition to linear trajectories occurs within the range of validity of supergravity. However,

to reach the excited states on the linear trajectory, where j − 2 = O(1), requires α′
0t to

be of order one. This is outside the range of validity of supergravity: the momenta are of

order the string scale. The supergravity regime thus describes the Pomeron trajectory for

all negative t, and for positive t ≪ α′
0
−1.

In fact, our effective quantum mechanical description, obtained from the physical state

condition L0 = 1, extends to larger t. Once α′t is of order one, higher derivative terms in

L0 are potentially unsuppressed. However, because we know that the flat spacetime L0 is

exactly quadratic in derivatives, these higher derivative terms are suppressed by at least
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Figure 9: The analytic behavior of Regge trajectories in the hard-wall model plotting real
√

4 − E

against
√

t. As t decreases, each bound state pole moves from positive to negative
√

4 − E, passing

under the continuum cut in the j plane and moving on the the second sheet.

one power of the curvature, a factor of λ−1/2. Hence to this accuracy we can continue to

use

L0 =
j

2
− α′

0te
−2u

4
− 1

4
√

λ

∂2

∂u2
+ O(λ−1/2) . (5.13)

The hard-wall cutoff gives rise to an unwanted artifact, because the states become

localized right at the wall. A better model would have a smooth minimum. For example,

consider the variant

L0 =
j

2
− α′

0t

4(e2u + e−2u − 1)
− 1

4
√

λ

∂2

∂u2
+ O(λ−1/2) , (5.14)

combined with an orbifolding u → −u. The potential has been designed to have the same

large-u behavior and the same minimum as before. Also, the boundary condition required

for energy-momentum conservation in this model is consistent with the orbifold. This

model gives a simple correction to the linearity of the trajectories. For states near the

quadratic minimum we can use the harmonic oscillator spectrum (even states only),

1 = L0 =
j

2
− α′

0t

4
+ (2n + 1

2 )(α′
0t)

1/2λ−1/4 + O(λ−1/2) , (5.15)

and so we obtain a (α′
0t)

1/2 correction to the slope, as in ref. [76]. (The hard-wall model,

where the potential is linear near the wall, gives an (α′
0t)

2/3 correction.)

We should note that the form (5.15) holds only for α′
0t = O(1), and breaks down at

a yet higher energy α′
0t = O(λ1/2). At this point the Pomeron becomes a rotating string

with a length of order the AdS radius, and we must carry out a full string quantization [76].

The radial fluctuations (which are responsible for the (α′
0t)

1/2 term above) are ultimately

exponentially suppressed, because the radial fluctuations are massive on the world-sheet.

The leading correction to the linearity of the trajectories is then the Lüscher term from

the massless fluctuations [77], which gives a negative constant shift.
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5.2 The analytic structure at all t (constant coupling)

Although it is a crude toy model, the hard-wall model may be interpreted as capturing key

universal features that will be true in any quantum field theory with ultraviolet conformal

invariance, infrared confinement, large λ and large N . Some of these features, especially

those that have to do with the analytic structure of amplitudes, may be valid in any large-N

gauge theory at any λ, and may in some cases survive to small N as well.

Certain phenomena visible in figure 8 will hold universally in any similar theory. Ul-

traviolet conformal invariance assures that the auxiliary quantum mechanics problem in

eq. (2.36) will have a potential which goes to the constant 4 for large u. Conformal invari-

ance and analyticity assure that its t dependence at large u will be qualitatively similar;

the deviations of V (u) from 4 will have a sign opposite to that of t and a size that shrinks

exponentially at large u. From this several consequences follow: the spectrum will have

• At all values of t, a continuum of states for E ≥ 4 (the BFKL-type cut at j ≤ 2− 2√
λ
),

independent of the confinement physics at small u.

• For sufficiently large positive t, bound states with energies En(t), n = 1, 2, . . . (i.e.

Regge trajectories, with spins jn(t) and positive slopes); the WKB approximation

assures that for fixed j the trajectories at large t are equally spaced in
√

t, while for

sufficiently large j the slopes of the trajectories at low t become parallel, with slope

of order (λΛ2)−1. The trajectories remain linear, with a (α′
0t)

1/2λ−1/4 correction, in

the resonance regime α′
0t = O(1).

• For sufficiently negative t, no bound states; as t decreases the bound states move into

the continuum, potentially becoming resonances, and thus the Regge trajectories

disappear under the cut and move onto the second sheet of the j plane.

• Since j0 < 2, a spin-two glueball with mass mn =
√

t at each t for which jn(t) = 2

(equivalently, En(t) = 0); the WKB approximation ensures that mn ∝ n for large n,

not
√

n as in flat-space string theory.

These quasi-universal phenomena are in contrast to certain important model-

dependent features. The low-lying bound states of the quantum mechanics problem, and

the behavior of the trajectories jn(t), n ∼ 1, near j = j0 — the value of t at which they

touch the end of the cut, and their behavior once they move onto the second sheet of the

j plane — are sensitive to the details of the potential. These aspects of the physics will

be model-dependent even at large λ and large N . The strongest model-dependence is to

be found where the leading trajectory disappears into the cut, which unfortunately is a

region of great physical importance. Specifically, the value t = t1 satisfying E1(t1) = 4,

where the leading trajectory intersects the cut at j = j0, is not strongly constrained by

general arguments. It appears that one may vary the potential V (u) to obtain either sign

for t1, suggesting that different confining models may lead to either sign. Thus, whether

the BFKL-type cut at j ≤ j0 or the leading Regge pole j1(t) dominates the large–s, t = 0

behavior of the kernel appears to be model-dependent. This is relevant for a number of
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processes whose amplitudes are dominated by (or related through the optical theorem to)

forward scattering.

At smaller λ (but still with large N and a conformal ultraviolet) certain aspects of

figure 8 will be modified. From QCD data and BFKL calculations, we expect that the

Regge trajectories become steeper as λ becomes smaller, and that j0 decreases from 2

toward 1. Our results are consistent with these expectations: the trajectories have slope

∼ 1/
√

λΛ2, and j0 = 2 − 2/
√

λ. The supergravity states and higher-spin string states

begin to overlap as λ → 1, and the simple picture from the supergravity regime must be

supplemented; our auxiliary quantum mechanics problem becomes non-local. The analytic

structure that we have found, however, may remain intact. This is because of the overall

stability of the cut, whose presence at all t is required by conformal invariance, and of the

trajectories, which are required by confinement and the existence of glueballs at positive t.

Conversely, however, our results support weak-coupling arguments against applying

BFKL to physics at t = 0. Single-Pomeron exchange for |t| ∼ Λ2 is sensitive to the details

of confinement, and the dominant contribution from this regime need not be determined

by the physics of the model-independent cut — the hard Pomeron — obtained at large

negative t. Different models with the same value of j0 can have different t → 0 soft-Pomeron

physics. While we have argued this in the regime 1 ≪ λ ≪ N , we see no reason for it to

change when λ ≪ 1 ≪ N , or for smaller N .

In sum, the analytic structure realized in figure 8 follows at large λ on very general

grounds, with few assumptions, from the constraints of ultraviolet conformal invariance

and the physics of confinement. Its generality suggests that its rough form survives to

smaller λ.

6. Effect of running coupling

Up to this point, we have considered only theories for which the beta function vanishes at

high energies. A logarithmically-running coupling λ makes a substantial qualitative change

to the kernel.

The effect on the differential operator appearing in the heat kernel is simple enough:

as long as the running is slow, one may view λ as changing adiabatically, and replace
√

λ

with
√

λ(u), or equivalently R with R(u), in ∆2. This reasoning is valid both in QCD

and in large-λ theories such as the duality cascade. Corrections to this approximation are

proportional to derivatives of
√

λ, which, as we will show, are parametrically small in the

region relevant to our computation.

However, as is well-known from weak-coupling analyses, this small change in the oper-

ator has a dramatic effect on the analytic structure of the kernel [28]. For a negative beta

function, the continuous spectrum of the operator is replaced with a discrete spectrum of

bound states, even for t < 0; the BFKL cut is replaced with a dense set of poles, the first

of which is often called the “hard Pomeron” (in a shift of the terminology formerly used to

describe the cut.) For a positive beta function, the coupling in the ultraviolet is unbounded

and the cut simply begins at j = 2, the infinite-λ expectation.
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6.1 Effect in UV

For a negative beta function (as in QCD) results are most easily obtained at large negative

t, where the details of the ultra-strongly-coupled infrared physics are unimportant. The

calculations are dominated by the region where 1 ≪ λ(u) ≪ N , that is, where the running

coupling satisfies g2 ≪ 1 ≪ g2N .

Examples of gauge theories with negative beta functions and string-theoretic dual

descriptions are known. One such theory [78] has IIB strings on a space with an orientifold

7-plane, 4 D7 branes displaced far from the orientifold, and N D3 branes on the orientifold;

this N = 2 Sp(2N) gauge theory has a negative beta function

βλ = − 4

N

λ2

4π2
. (6.1)

It is important to note that βλ ∼ 1/N in this model, which is also true of the duality

cascade (for which βλ > 0.) In such models the dual strings propagate on a space which is

approximately AdS5 × W , with a slowly varying metric and/or dilaton.24

For the general βλ < 0 case, we define

0 < B ≡ −βλ/λ2 ∼ 1

N
.

The coupling varies slowly, as

1

λ(µ)
=

1

λ(µ0)
+ B ln(µ/µ0) (6.2)

Viewed from the ten-dimensional point of view, the coupling depends on z, or equivalently

u, as
1

λ(u)
=

1

λ(u0)
+ B(u − u0) (6.3)

since u ∝ − ln z ∝ ln r and r ∼ µ in the AdS/CFT correspondence. In this section it will

be convenient to take λ(u0) = ∞ and u0 = 0, so that λ(u) = (Bu)−1; note that in the

previous section we set u = 0 to be at the confinement scale Λ, but we will not assume so

here.

What is the effect of this running coupling? The details are model-dependent, but

only in regions at small u. At large u the effect can only be an adiabatic alteration of the

AdS5 × W metric (except possibly, as noted in the previous footnote, at isolated regions

of small measure on the internal space W , which will have no effect on the calculation.)

Working in string frame, the metric will take the form, to leading order at large u,

ds2 = e2A(u)dx2 + R2(u)
[

du2 + ds2
W (u)

]

(6.4)

24This statement need not be strictly correct; in fact it is violated by the metric of the orientifold model,

at any u, in the region near the orientifold plane. However, the space-time region in which it is false

decreases without limit as u becomes large. This issue plays no role here and we will proceed without

examining it further.
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where, to leading order, A ≈ u and

R4(u) = 4πλ(u)α′2 =
4πα′2

Bu
. (6.5)

It will prove inconvenient to have a running guu, so for later use we may put the metric in

the form

ds2 = e2A(w)dx2 + α′dw2 + R2(w)ds2
W (w) . (6.6)

using a variable w satisfying

dw =
R(u)√

α′ du ⇒ u = Cw4/3 (6.7)

where C ∝ B1/3.

We now turn to the differential operator whose spectrum determines the kernel. This

is ∆j ≈ ∆2, as defined in (2.21), with the replacement of the factor r/R by eA:

∆2 = e2A∇2
0

[

e−2Aφ++

]

. (6.8)

(In the hard-wall model below, the boundary condition at the wall will now be

∂w(e−2Aφ++) = 0.) In the adiabatic regime, all terms in the metric vary slowly at large u

except for the warp factor e2A(u). We need therefore only keep derivatives acting on A(u),

while dropping all derivatives acting on R(u) and on the slowly-varying metric on W . Sim-

ilarly, if the theory has other varying fields, their slow variations need not be retained at

large u.

In the w coordinate, the differential operator is of Schrödinger form. Diagonalizing the

operator is equivalent to solving a Schrödinger problem

HΨE(w) = [−∂2
w + V (w)]ΨE (w) = EΨE(w) (6.9)

with potential

V (w) =

(

8

3
C

)2

w2/3 − h(w)t e−2Cw4/3
(6.10)

where h(w) is a positive-definite function (of mass dimension −2) whose form depends

on details beyond the adiabatic approximation; its effect is subleading, because it varies

slowly compared to the exponential that it multiples. (To the same level of approximation,

the boundary condition in the hard wall is ∂w[e−2Cw4/3
ΨE(w)] = 0.) Here the operator H

and the eigenvalue E differ from our earlier conventions; in the limit of a vanishing beta

function, H =
√

λH and E =
√

λE. With a running coupling, our earlier H and E are not

defined, since they were expressed in terms of what is now a running R; but E = 2(2− j) is

well-defined. Normal-ordering issues involving H and the running λ are subleading within

the adiabatic approximation.

The nonadiabatic corrections to these expressions are of order 1/u ∼ (R/
√

α′)/w
∼ Bλ(u); since B ∼ 1/N this implies corrections are of order λ(u)/N , which is small in

the region of interest. Said another way, if t is large and negative, but not exponentially

large, the repulsive exponential potential forces the calculation to the region of large u,
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t < 0

w

t > 0

0

V (w)

t = 0

Figure 10: The form of the potential V (w) in a model with a running coupling, where confinement

is implemented with a hard wall. Curves are shown for positive, zero, and negative values of t.

Compare to figure 7.

where 1 ≪ λ(u) ≪ N and our adiabatic approximations and supergravity are both valid.

Thus the large negative t region is, as in the conformal case, model-independent. This is

consistent with earlier weak-coupling results [28, 29] and is illustrated in figure 10.

The potential, for t < 0, grows to infinity at both small and large w, which implies

that the spectrum of ∆2 consists of discrete bound states. More precisely, this is true only

within the supergravity approximation, where |E| ≪
√

λ, and |j − 2| ∼ 1/
√

λ. At large w,

where the coupling constant becomes small, the supergravity approximation breaks down

and perturbative field theory becomes valid. In this regime one can match on to existing

results for BFKL with a running coupling [20, 21, 79 – 83]. It is well-known [28] that in

this case the discrete poles25 end at j = 1, where a cut begins and extends to j → −∞.

For the bound states lying within the supergravity approximation, the slowly-growing

potential at large w ensures that the spacing of their energy eigenvalues decreases at higher

eigenvalues. The lowest eigenvalue, not surprisingly, lies near

j1(t) ∼ 2 − 2
√

λ (µ) |
µ=

√
|t|

− O(
√

B) = 2 −
√

2B ln
[

z2
0 |t|

]

− O(
√

B) . (6.11)

This is simply the conformal result for the beginning of the cut but with λ replaced with the

running coupling λ(µ), evaluated at µ ∼
√

|t|, with corrections from zero-point fluctuations

around the minimum of the effective potential.26

Strictly speaking, none of these calculations can be done entirely within the large λ

regime, since λ(µ) → 0 in the ultraviolet. However, because B ∼ 1/N , this occurs at very

25For the non-vacuum qq̄ system, the corresponding poles end at j = 0 [55].
26To see this it is sufficient to do a variational calculation or harmonic-oscillator-approximation for the

ground state in the potential (6.10). One must use the fact that C ∼ B1/3 is small, that h(w) is slowly

varying, that Cw2/3 ∼
√

Bu ∼ 2/
p

λ(u), and that the answer must be consistent with our previous result

for the conformal regime, j0 = 2 − 2/
√

λ, in the limit B → 0, t → ∞ with λ(
p

|t|) fixed. Higher states

are better described using the WKB approximation, in a form which is quite similar to the weak coupling

calculations of [29].
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j − 2

t

Figure 11: The analytic behavior of Regge trajectories with a running coupling. The figure

represents the spectrum of a hard-wall model with potential (6.10); for definiteness we have set

h(w) = 1 and put the wall at a point where the exponential term is of order one. For t > 0 the

bound-state poles are only logarithmically changed from figure 8, but for t < 0 the cut in figure 8

disintegrates into poles which are the continuation of the Regge poles at positive t. As t decreases,

the poles slowly descend; weak coupling considerations indicate they move toward j = jmin ≥ 1,

where a cut begins.

large u, in particular u ≫ N . The leading BFKL poles, associated with eigenstates of ∆2,

have exponentially damped eigenfunctions at large u, and are not sensitive to this region.

For sufficiently large −t, the region of small u makes an exponentially suppressed

contribution, but the above calculations will have to be modified at small u as |t| decreases.

There are two possible effects that should be accounted for: at small u our adiabatic

approximation may break down, and also ultra-strong-coupling effects and confinement

become important. In fact these two conditions are related, and both occur around u ∼ 1,

or more precisely at u ∼ 1/BN . Therefore either −t is large enough that both effects

can be neglected, or −t is small enough that infrared effects such as confinement must be

accounted for. In short we expect the results just obtained for large negative t will be

reliable for −t ≫ Λ2, requiring modification only at the scale where confinement effects set

in.27

It is straightforward to repeat this exercise for the case of a positive beta function.

The result is quite different, because the effective potential is bounded as u → ∞. The

spectrum again consists of a cut, which begins at j0 = 2 − 2/
√

λmax where λmax is the

largest value obtained by the coupling. In the case of the duality cascade [71], the ’t Hooft

coupling formally runs to infinity and j0 = 2.

6.2 The analytic structure at all t (running coupling)

Now let us turn to the properties of the kernel at values of t where confinement is important.

27This can be seen in particular examples. For example, in the orientifold model, the subleading terms

become important where the dilaton reaches the value of order 1; this is also where large deviations in

the metric are expected. In a confining version of the orientifold model, along the lines of the N = 1∗

model [70], the confinement regime must set in at or above this scale.
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As before, we focus on the general properties of confining theories, whose essential feature

is the ending of the dual spacetime at some u ∼ 1, or equivalently, some w ∼ N1/4. In

section 5 we considered the hard-wall model with a conformal ultraviolet, and inferred

general lessons from it. Rather than pursue a similar strategy here, we will now modify

the lessons of section 5.2 as required for the case of a running coupling.

Many features of ultraviolet-conformal infrared-confining theories continue to apply

here. Again the quantum mechanics problem in the large positive t region is characterized

by a set of bound states with negative energy eigenvalues (that is, with positive values of

j−2) which are well-separated and form the Regge trajectories of the supergravity regime.

Again the |t| ∼ Λ2 regime is model-dependent in its details. The major new feature is

that the continuum of states with positive eigenvalues (the cut at j ≤ j0) is no longer

present, for any t, because of the growing potential at large w. The operator has a discrete

spectrum at any t, consisting of an infinite number of closely spaced states with a positive

eigenvalue (j < 2), and for t > 0 a finite number of well-spaced negative-eigenvalue (j > 2)

states. As t is increased, the eigenvalue En(t) of any given state will move continuously

from positive to negative; correspondingly its spin jn(t) will move smoothly from below 2 to

above 2. This is shown in figure 11. Thus, in contrast to the conformal case, where the spin

j of each Regge trajectory, as t is decreased, moves down to j = j0 and disappears below

the BFKL-type cut, here each trajectory moves down to become one of the BFKL-type

poles. In particular, the leading Regge trajectory (often called the soft Pomeron) smoothly

becomes the leading pole (the hard Pomeron) as t moves from positive to negative. This

is consistent with the suggestion of [31]. It is interesting to compare the figure with the

results in [84]; see also [19].

As in the UV-conformal case, this basic form of figure 11 is model-independent, while

some details, such as the precise nature of the transition near |t| ∼ Λ2, are not. Specifically,

the value j1(t) of the leading pole at and near t = 0 is sensitive to the details of confinement,

as was also true in the ultraviolet conformal case.

It seems likely that the analytic structure shown in figure 11 is preserved into theories

with a parametrically larger beta function, including large-N QCD, for which the small-λ

regime is much closer to the confinement regime and the large-λ regime is very small. QCD

data [15] and lattice results on the hadron spectrum [7, 8, 85], and BFKL calculations at

−t ≫ Λ2 [28, 29, 84], suggest that our results match the analytic structure of QCD at

|t| ≫ Λ2, for both signs of t. The logarithmically-violated conformal invariance of the

theory continues to put constraints on the form of the kernel at large negative t, while the

Regge trajectories at positive t are not expected to be much affected by the beta function.

A smooth transition between the two behaviors, as in figure 11, is not required theoretically,

but seems plausible.

An interesting feature is that the leading Regge trajectory in figure 11 has dj/dt > 0

everywhere, and so the t = 0 behavior of the amplitude must have faster growth with s

than the t < 0 behavior. The data are ambiguous as to whether this applies in real-world

QCD, as we now discuss.
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Figure 12: In N = 4 Yang-Mills theory, the weak- and strong-coupling calculations of the po-

sition j0 of the leading singularity for t ≤ 0, as a function of αN . Shown are the leading-order

BFKL calculation (dotted), the next-to-leading-order calculation (dashed), and the strong-coupling

calculation of this paper (solid). Note the latter two can be reasonably interpolated.

7. Outlook

We have obtained the j-plane singularity structure of the Pomeron, as a function of t,

at large ’t Hooft coupling. One may ask if our strong-coupling results are consistent

with those which have already been obtained at weak coupling. In particular, since the

location j0 of the leading singularity has been obtained to second- or third-order in certain

weakly-coupled theories, using BFKL computational methods, one may ask if the weak-

and strong-coupling results can be suitably compared. A theory in which this comparison

is well-posed is N = 4 Yang-Mills theory. This theory has a constant and fully adjustable

coupling α, and the quantity λ = R4/(α′)2 = 4παN , where α is the constant Yang-Mills

coupling. Can our result j0 = 2−2/
√

λ be interpolated with the weak-coupling result? The

answer is shown in figure 12. The leading-order BFKL computation of j0, eq. (1.3), grows

from 1 toward 2 as αN increases, but dramatically overshoots our result well before one

would trust the strong-coupling calculation. However, the next-to-leading-order correction

to the coefficient j0 is substantial and negative [48] — though much smaller than the

correction in QCD itself (on which we will have more to say below.) The two-loop formula

for the BFKL exponent j0

j0 = 1 + 4 ln 2
αN

π

(

1 − 7.58
αN

4π

)

(7.1)

does not overshoot the strong-coupling result, and indeed matches on to it quite reasonably

at αN ∼ 1. Thus, at least in N = 4 Yang-Mills, the results appear compatible.

Let us now try to relate our dual string picture to the Pomeron physics of QCD itself.

The latter is still a subject of great confusion; we cannot fully resolve this here, but the

simple and unified picture that we have found gives a useful framework for organizing the

discussion.
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One of the most striking aspects of high-energy hadronic scattering is the rise in the

total cross section, σT (s), at the highest available energies to date. In Regge language, this

requires a leading j-plane singularity with vacuum quantum numbers, i.e. the Pomeron, and

an intercept above j = 1. For instance, in the well-known work of Donnachie-Landshoff [6],

hadron cross-sections are fitted to a single-Pomeron exchange model that gives j0 = 1.08

for the Pomeron at t = 0. On the other hand, there is also evidence, for example from the

small-x behavior of parton distribution functions, for a much larger intercept, perhaps as

large as 1.5 [86].

It is common to ascribe these behaviors to two distinct components of the Pomeron.

The exchanged object relevant for processes dominated by infrared physics is called the

“soft” Pomeron, while in processes in which scales above the confinement scale are domi-

nant, it is the “hard” Pomeron which is relevant. This distinction has a simple meaning in

our picture, where the Pomeron depends on the fifth coordinate r: this degree of freedom

corresponds to the overall size of the hadron wavefunction, δx ∝ R2/r, so the soft Pomeron

has a size set by the confinement scale while the hard Pomeron is much smaller.

The two-component Pomeron still presents a significant puzzle, however. Consider

the large-N limit of QCD, where we can isolate the contribution from single Pomeron

exchange. The leading Pomeron is a pole, due to the running coupling, and we have the

sharp question: what is its intercept — is it near 1.08, or much larger? The present

theoretical understanding is not sufficient to answer this. If we start at large negative t,

where the potential barrier forces the Pomeron to be small, then the perturbative BFKL

analysis applies and gives an exponent

j0 = 1 +
4 ln 2

π
α(t)N

(

1 + O
[

α(t)N

π

])

. (7.2)

As we reduce |t|, the effective coupling increases and so does the exponent, until at some

point infrared effects take over and the growth stops, leading to a finite intercept at t = 0.28

If we make even the seemingly conservative assumption that the BFKL result holds down

to α = 0.25 (for N = 3 QCD), we obtain the large exponent j0 ∼ 1.6. However, it is known

that the two-loop correction to the exponent is very large and negative,

j0 = 1 + 4 ln 2
αN

π

(

1 −
[

25.8 + 0.2
Nf

N

]

αN

4π

)

, (7.3)

and within the regime in which the calculation is reliable — at most α < 0.1, or more

usefully αN < 0.3 — the value of j0 does not exceed 1.10 [20]. The leading- and next-to-

leading expressions for j0 as a function of αN are shown in figure 13, along with a horizontal

line at 1.08. Thus there is no reliable indication that the true intercept as t → 0 must

exceed 1.10, and perhaps the all-orders BFKL calculation would predict nothing larger

than 1.08. We cannot resolve this issue, but let us discuss how the various possibilities

could be consistent with the two-component Pomeron picture.

28In our strong-coupling potential model with running coupling, the exponent is monotonically increasing

with t. This is likely to be true at all λ, since even if |t| is small we can take a small Pomeron wavefunction

as a variational approximation, giving a lower bound on the exponent.
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Figure 13: In QCD, the leading-order and next-to-leading-order calculations of the position j0
of the leading singularity as a function of αN . Shown are the leading-order BFKL calculation

(dotted), the next-to-leading-order calculation (dashed), with Nf = 3, and the value 1.08 of the

phenomenological soft-Pomeron intercept as extracted from data [6] (solid). There is no convincing

evidence that j0 ever exceeds 1.08.

If the true exponent for the hard Pomeron is large compared to 1.08, how could we see

a much smaller exponent in the total cross section? There are two possibilities here: that

the total cross section is still in a regime dominated by single Pomeron exchange, or that

we are seeing the effects of multiple Pomeron exchange. If we are seeing single-Pomeron

exchange, then the soft Pomeron must be some sort of resonance. Recall that the energy

in the potential model appears with a negative sign in the exponent, so a lower exponent

is a higher energy. In the potential model, there could be a barrier between the small-r

and large-r region, with the true Pomeron ground state (the hard Pomeron) concentrated

at large r, and the soft Pomeron being an excited state at small r. Despite the fact that

dj0/dt > 0 for the leading pole, the effect of the resonance would be to make it appear that

dj0/dt < 0 in a region where the resonance begins to dominate but before the asymptotic

Regge behavior is reached. We should emphasize that at small λ the sharp locality in r

no longer holds, and the reduction to the single degree of freedom of the Pomeron size is

no longer a precise statement, but we can imagine that there are different regions in the

Pomeron wavefunction that mix only weakly [31].

The other possibility is that the single-Pomeron exponent really is large. This leads

to rapid growth of the cross section with energy and the apparent value of 1.08 must then

be due to unitarization effects, with multi-Pomeron exchange pulling the exponent down

toward the Froissart bound of 1-plus-logarithms. We will briefly discuss unitarization in

the string picture below. For QCD, if multi-Pomeron exchange dominates, there is the

puzzling question of why factorization works so well, in particular that data indicates that

σa,b ≃ γaγb to the level of 10 − 20%.

If instead the true exponent for the hard Pomeron is no larger, and perhaps even

smaller, than that of the soft Pomeron, why do we see a larger exponent in some processes?

It is possible that this is a transient effect due to diffusion. If we have a process where
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some external states are hard and some soft, as in deep inelastic scattering, then the initial

overlap of the wavefunctions is small, but as we go to larger s the Pomeron diffusion kernel

leads to an increasing overlap, and thereby gives an amplitude that increases faster than

the exponent in the kernel. An example of this effect is discussed in [30].

Regardless of the situation in QCD at current energies, it must be true asymptotically

that multi-Pomeron exchange is important. The BFKL calculation, in the extreme UV

where it must be valid, gives a variational lower bound on the Pomeron intercept that is

strictly greater than 1. Thus single Pomeron exchange will necessarily violate the Froissart

bound. If we consider very large but fixed N , each Pomeron exchange costs a factor of

1/N2 but increases without bound at high energy, so at some point multiple Pomeron

exchange will dominate.

It is interesting to consider this regime on the dual string side. Giddings studied

hadronic total cross sections via gauge-string duality, and argued that the dominant process

was black hole production, and moreover that this would saturate the Froissart bound [87]

(for some recent followup see refs. [88, 89]). Our work in this paper applies in a different

region of parameter space; that is, we take N large compared to all other quantities so that

we are strictly limited to one-Pomeron exchange, while black holes are produced as s → ∞
at fixed N . For completeness we provide here a brief discussion of the latter limit.

Looking first at the scattering process in ten dimensions, the amplitude in the super-

gravity approximation is

T ∼ Gs̃2/t̃ , G ∼ g2
stringα

′ ∼ R8/N2 ;

note that we are ignoring dimensionless constants. To get a dimensionless measure of the

size of this amplitude we rescale to canonical normalization and go to impact parameter

space,

T ′ ∼ R8s̃/b6N2 .

where b is the impact parameter of the collision. At any fixed b and N , this is large

when s̃ ≫ b6N2/R8. The minimum effective impact parameter is
√

α′, so perturbation

theory first breaks down when s̃ ∼ N2α′3/R8. This condition is reached first at r = r0,

corresponding to s ∼ Λ2N2λ−3/2.

When perturbation theory breaks down we can go further by the eikonal summation,

which in impact-parameter space takes the form

Teik = −i(eiT ′ − 1) .

There is a simple interpretation: one-graviton exchange breaks down because the center

of mass energy is large, and the resummed amplitude represents the interaction of the

particles through their coherent gravitational fields.

The eikonal approximation breaks down when the momentum transfer ∂bT ′ is of order√
s, or

s̃1/2R8/b7N2 ∼ s̃1/2G/b7 ≫ 1 .

In ten dimensions this is the same as the condition that the impact parameter is less than

the Schwarzschild radius, so the system forms a black hole. Thus at given b there are three
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parametric regimes with increasing energy: one-graviton exchange, eikonalized graviton

exchange, and black hole formation. Note also that nonlinearities of the gravitational field

are also small below the black hole scale, so only s-channel ladder plus crossed-ladder

graphs are important (the eikonal approximation).

We have neglected Regge shrinkage, which does not qualitatively affect the discussion,

as well as the effect of AdS curvature, which slightly reduces the exponent and also gives

the graviton a mass; to obtain a Froissart bound we must take the latter into account.

Ref. [87] argued that black hole production would saturate the Froissart bound. However,

we should note that the eikonal approximation also saturates this bound [90, 91], so the

amplitude will take the Froissart form even before black hole production. Note however

that the transition from eikonal to black hole behavior is a genuine phase transition, from

states with order N0 degrees of freedom to states with N2 degrees of freedom (a gluon

plasma; see [92] for a recent discussion.)

It is interesting to follow the discussion to smaller λ. For exponent j0, the condition

for breakdown of the eikonal approximation is sj0−3/2f(b)/N2 ≫ 1. Once j0 drops below

1.5, the energy dependence cannot overcome the N2, and so there should be no analog of

the black hole phase; rather the eikonal approximation is valid to all energies. In large-N

QCD it seems likely, according to the previous discussion, that the effective exponent is

always less than 1.5; then there is no production of a gluon plasma. Ref. [92] came to a

similar conclusion by other reasoning.

Let us now comment on a couple of important issues that we have left unresolved. The

matching at negative t of the weak-coupling and strong-coupling conformal kernels, dis-

cussed at the end of section 2, is subtle, because the two kernels are functions of somewhat

different variables. The leading-order weak-coupling kernel is a function of the momenta

of two gluons, while the strong coupling kernel is a function of collective coordinates of a

string built from an indefinite number of gluons. To make a precise match would require

a more complete understanding of how partons emerge from the string description of the

theory, which is a question far outside the supergravity approximation. However, it should

be possible to clarify the relation of the results without a full understanding of the partonic

limit. Note there is a formal similarity between the weak-coupling BFKL amplitude (2.43)

and the general string result (3.47); this should be explored further.

Also unaddressed are the formal issues surrounding the adiabatic approximation and

the slow running of the coupling. In a conformal theory, both at weak coupling and at

strong coupling, one finds a stable t-independent cut, and there is a clear understanding

of how this follows from conformal invariance. Meanwhile, a running coupling breaks the

cut into a set of running poles, rather than a t-dependent cut. The fact that this occurs

must follow from a formal argument involving weakly-broken conformal invariance, but we

are not aware of the existence of any direct proof. It should also be possible to study the

spacing of the poles and properties of their residues using methods that are valid at any λ.

To conclude, we have in this paper concerned ourselves with a unified treatment of

large-N QCD-like theories at high energy, by concentrating on the single Pomeron kernel

over the entire range of t. We have limited our discussion to the 2-to-2 scattering of spin-

less particles, but the formalism can be generalized to treat processes involving particles
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with low spin, multi-particle production, and others. Our kernel can be directly used to

address quarkonium-quarkonium and γ∗γ∗ scattering, with external states involving wave

functions which are strongly peaked at large u, to extend earlier discussions of deep inelas-

tic scattering [30], and connect these regimes to the large-angle scattering physics of [25].

Exclusive production processes involving a moderate number of final particles or jets can

also be studied [62]. We can also generalize our analysis to apply to inclusive particle

production [60, 61]. One particular promising area of study is the inclusive diffractive

production of jets, which is expected to have a significant cross section at LHC. Since such

events will likely involve a wide range of momentum transfer squared, our unified frame-

work, capable of describing simultaneously both infrared and ultraviolet features, offers a

unique vantage point. In particular, the idea of a “Pomeron structure function”, which

has been a controversial notion from a weak-coupling analysis [93 – 95], can be addressed

from a fresh perspective. Other specific examples of experimental importance include the

study of diffractive production of vector mesons at large t, which has been thoroughly

analyzed from a weak coupling approach [96]. We hope to return to these issues in future

publications.
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[13] C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP

01 (1999) 017 [hep-th/9806021].

[14] R. de Mello Koch, A. Jevicki, M. Mihailescu and J.P. Nunes, Evaluation of glueball masses

from supergravity, Phys. Rev. D 58 (1998) 105009 [hep-th/9806125].

[15] A.V. Barnes et al., Pion charge exchange scattering at high-energies, Phys. Rev. Lett. 37

(1976) 76.

[16] L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in nonabelian

gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338.

[17] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian

gauge theories, Sov. Phys. JETP 45 (1977) 199.

[18] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics,

Sov. J. Nucl. Phys. 28 (1978) 822.

[19] J.R. Forshaw and D.A. Ross, Quantum chromodynamics and the Pomeron, Cambridge

University Press, U.K. (1997).

[20] V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys.

Lett. B 429 (1998) 127 [hep-ph/9802290].

[21] G. Camici and M. Ciafaloni, Irreducible part of the next-to-leading BFKL kernel, Phys. Lett.

B 412 (1997) 396 [hep-ph/9707390].

[22] A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107

[hep-ph/9408245].

[23] L. Susskind, Strings, black holes and Lorentz contraction, Phys. Rev. D 49 (1994) 6606

[hep-th/9308139].

[24] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[25] J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett.

88 (2002) 031601 [hep-th/0109174].

[26] R.C. Brower and C.-I. Tan, Hard scattering in the M-theory dual for the QCD string, Nucl.

Phys. B 662 (2003) 393 [hep-th/0207144].

– 57 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C034509
http://arxiv.org/abs/hep-lat/9901004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB605%2C344
http://arxiv.org/abs/hep-ph/0409183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB574%2C219
http://arxiv.org/abs/hep-th/9908196
http://jhep.sissa.it/stdsearch?paper=10%281999%29037
http://arxiv.org/abs/hep-th/9908175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB587%2C249
http://arxiv.org/abs/hep-th/0003115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://jhep.sissa.it/stdsearch?paper=01%281999%29017
http://jhep.sissa.it/stdsearch?paper=01%281999%29017
http://arxiv.org/abs/hep-th/9806021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C105009
http://arxiv.org/abs/hep-th/9806125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C37%2C76
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C37%2C76
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C23%2C338
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C45%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C28%2C822
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C127
http://arxiv.org/abs/hep-ph/9802290
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB412%2C396
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB412%2C396
http://arxiv.org/abs/hep-ph/9707390
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB437%2C107
http://arxiv.org/abs/hep-ph/9408245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C6606
http://arxiv.org/abs/hep-th/9308139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C031601
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C031601
http://arxiv.org/abs/hep-th/0109174
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB662%2C393
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB662%2C393
http://arxiv.org/abs/hep-th/0207144


JH
E

P
1

2
(2

0
0

7
)0

0
5

[27] S.J. Brodsky and G.F. de Teramond, Light-front hadron dynamics and AdS/CFT

correspondence, Phys. Lett. B 582 (2004) 211 [hep-th/0310227].

[28] L.N. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986)

904.

[29] R. Kirschner and L.N. Lipatov, Bare reggeons in asymptotically free theories, Z. Physik C 45

(1990) 477.

[30] J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05

(2003) 012 [hep-th/0209211].

[31] E. Levin and C.-I. Tan, Heterotic Pomeron: a unified treatment of high-energy hadronic

collisions in QCD, hep-ph/9302308.

[32] R. Blankenbecler, S.J. Brodsky, J.F. Gunion and R. Savit, The connection between Regge

behavior and fixed angle scattering, Phys. Rev. D 8 (1973) 4117.

[33] R.A. Janik and R. Peschanski, High energy scattering and the AdS/CFT correspondence,

Nucl. Phys. B 565 (2000) 193 [hep-th/9907177].

[34] R.A. Janik, String fluctuations, AdS/CFT and the soft Pomeron intercept, Phys. Lett. B 500

(2001) 118 [hep-th/0010069].

[35] O. Andreev and W. Siegel, Quantized tension: stringy amplitudes with Regge poles and

parton behavior, Phys. Rev. D 71 (2005) 086001 [hep-th/0410131].

[36] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[37] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[38] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk vs. boundary dynamics in

Anti-de Sitter spacetime, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171].

[39] A.M. Polyakov, String theory and quark confinement, Nucl. Phys. 68 (Proc. Suppl.) (1998) 1

[hep-th/9711002].

[40] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three-loop universal

anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett.

B 595 (2004) 521 [hep-th/0404092].

[41] S. Bondarenko, E. Levin and C.I. Tan, Matching of soft and hard Pomerons,

hep-ph/0306231.

[42] E. D’Hoker and R. Jackiw, Liouville field theory, Phys. Rev. D 26 (1982) 3517.

[43] D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988)

407.

[44] C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043].

[45] T. Jaroszewicz, Gluonic Regge singularities and anomalous dimensions in QCD, Phys. Lett.

B 116 (1982) 291.

[46] L.N. Lipatov, Small-x physics in perturbative QCD, Phys. Rept. 286 (1997) 131

[hep-ph/9610276].

– 58 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB582%2C211
http://arxiv.org/abs/hep-th/0310227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C63%2C904
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C63%2C904
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC45%2C477
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC45%2C477
http://jhep.sissa.it/stdsearch?paper=05%282003%29012
http://jhep.sissa.it/stdsearch?paper=05%282003%29012
http://arxiv.org/abs/hep-th/0209211
http://arxiv.org/abs/hep-ph/9302308
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD8%2C4117
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB565%2C193
http://arxiv.org/abs/hep-th/9907177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB500%2C118
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB500%2C118
http://arxiv.org/abs/hep-th/0010069
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C086001
http://arxiv.org/abs/hep-th/0410131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C046003
http://arxiv.org/abs/hep-th/9805171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C68%2C1
http://arxiv.org/abs/hep-th/9711002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB595%2C521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB595%2C521
http://arxiv.org/abs/hep-th/0404092
http://arxiv.org/abs/hep-ph/0306231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C3517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB303%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB303%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB374%2C37
http://arxiv.org/abs/hep-th/9511043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB116%2C291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB116%2C291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C286%2C131
http://arxiv.org/abs/hep-ph/9610276


JH
E

P
1

2
(2

0
0

7
)0

0
5

[47] A.V. Kotikov and L.N. Lipatov, NLO corrections to the BFKL equation in QCD and in

supersymmetric gauge theories, Nucl. Phys. B 582 (2000) 19 [hep-ph/0004008].

[48] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric

gauge theory, Nucl. Phys. B 661 (2003) 19 [hep-ph/0208220].

[49] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three-loop universal

anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett.

B 595 (2004) 521 [hep-th/0404092].

[50] I.I. Balitsky and V.M. Braun, Evolution equations for QCD string operators, Nucl. Phys. B

311 (1989) 541.

[51] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. Math. 48 (1947)

568.

[52] J. Polchinski, String theory. Vol. 1 : an introduction to the bosonic string, Cambridge

University Press, Cambridge U.K. (1998).

[53] J. Kwiecinski, Leading QQ̄ Regge singularities in perturbative QCD, Phys. Rev. D 26 (1982)

3293.

[54] R. Kirschner and L.N. Lipatov, Double logarithmic asymptotics of quark scattering

amplitudes with flavor exchange, Phys. Rev. D 26 (1982) 1202.

[55] M. McGuigan and C.B. Thorn, Quark-anti-quark Regge trajectories in large-Nc QCD, Phys.

Rev. Lett. 69 (1992) 1312 [hep-ph/9205211].

[56] J. Bartels and M. Lublinsky, Quark antiquark exchange in γ∗γ∗ scattering, JHEP 09 (2003)

076 [hep-ph/0308181].

[57] J. Bartels and M. Lublinsky, γ∗γ∗ scattering via secondary reggeon exchange in QCD, Mod.

Phys. Lett. A 19 (2004) 19691982 [hep-ph/0406273].

[58] R.R. Metsaev, C.B. Thorn and A.A. Tseytlin, Light-cone superstring in AdS space-time,

Nucl. Phys. B 596 (2001) 151 [hep-th/0009171].

[59] B. Zwiebach, A first course in string theory, Cambridge University Press, Cambridge U.K.

(2004).

[60] C.E. Detar et al., Helicity poles, triple-Regge behavior and single-particle spectra in

high-energy collisions, Phys. Rev. Lett. 26 (1971) 675.

[61] C.E. Detar, J.H. Weis, K. Kang and C.-I. Tan, Duality and single-particle production, Phys.

Rev. D 4 (1971) 425.

[62] R.C. Brower, C.E. DeTar and J.H. Weis, Regge theory for multiparticle amplitudes, Phys.

Rept. 14 (1974) 257.

[63] S. Mandelstam, Interacting string picture of dual resonance models, Nucl. Phys. B 64 (1973)

205.

[64] M. Kaku and K. Kikkawa, The field theory of relativistic strings. Part 1 : trees, Phys. Rev. D

10 (1974) 1110.

[65] D. Amati, A. Stanghellini and S. Fubini, Theory of high-energy scattering and multiple

production, Nuovo Cim. 26 (1962) 896.

[66] H.B. Nielsen and P. Olesen, A parton view on dual amplitudes, Phys. Lett. B 32 (1970) 203.

– 59 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB582%2C19
http://arxiv.org/abs/hep-ph/0004008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB661%2C19
http://arxiv.org/abs/hep-ph/0208220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB595%2C521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB595%2C521
http://arxiv.org/abs/hep-th/0404092
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB311%2C541
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB311%2C541
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ANMAA%2C48%2C568
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ANMAA%2C48%2C568
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C3293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C3293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C1202
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C1312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C1312
http://arxiv.org/abs/hep-ph/9205211
http://jhep.sissa.it/stdsearch?paper=09%282003%29076
http://jhep.sissa.it/stdsearch?paper=09%282003%29076
http://arxiv.org/abs/hep-ph/0308181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA19%2C1969
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA19%2C1969
http://arxiv.org/abs/hep-ph/0406273
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB596%2C151
http://arxiv.org/abs/hep-th/0009171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C26%2C675
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD4%2C425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD4%2C425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C14%2C257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C14%2C257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB64%2C205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB64%2C205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA%2C26%2C896
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB32%2C203


JH
E

P
1

2
(2

0
0

7
)0

0
5

[67] B. Sakita and M.A. Virasoro, Dynamical model of dual amplitudes, Phys. Rev. Lett. 24

(1970) 1146.

[68] J. Polchinski and L. Susskind, String theory and the size of hadrons, hep-th/0112204.

[69] C.G. Callan Jr. and Z. Gan, Vertex operators in background fields, Nucl. Phys. B 272 (1986)

647.

[70] J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge

theory, hep-th/0003136.

[71] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

[72] S. Hong, S. Yoon and M.J. Strassler, On the couplings of the ρ meson in AdS/QCD,

hep-ph/0501197.

[73] H. Boschi-Filho, N.R.F. Braga and H.L. Carrion, Glueball Regge trajectories from

gauge/string duality and the Pomeron, Phys. Rev. D 73 (2006) 047901 [hep-th/0507063].
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